Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Revolutionizing Molecular Science: Scientists Unveil Groundbreaking Single-Molecule Detection Technique
    Chemistry

    Revolutionizing Molecular Science: Scientists Unveil Groundbreaking Single-Molecule Detection Technique

    By University of Wisconsin-MadisonJune 2, 2024No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Microcavity With Two Concave Mirrors
    The heart of this study is a fiber microcavity. Here, one can see a small concave depression on the surface of an optical fiber. The researchers used a microcavity with two concave mirrors, but this image of a single concave microcavity makes it easier to see the fiber mirror setup. Credit: Photo by Carlos Saavedra / UW–Madison

    University of Wisconsin–Madison scientists have developed a new, highly sensitive method to detect and analyze single molecules without using fluorescent labels, potentially transforming research in drug discovery and materials science.

    Researchers at the University of Wisconsin–Madison have developed the most sensitive method yet for detecting and profiling a single molecule — unlocking a new tool that holds potential for better understanding how the building blocks of matter interact with each other. The new method could have implications for pursuits as varied as drug discovery and the development of advanced materials.

    The technical achievement, detailed in a paper published in the journal Nature, marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.

    “We’re very excited about this,” says Randall Goldsmith, a UW–Madison professor of chemistry who led the work. “Capturing behaviors at the level of single molecules is an amazingly informative way of understanding complex systems, and if you can build new tools that grant better access to that perspective, those tools can be really powerful.”

    While scientists can glean useful information from studying materials and biological systems at larger scales, Goldsmith says that observing the behavior of and interactions between individual molecules is important for contextualizing that information, sometimes leading to new insights.

    “When you see how nations interact with each other, it all comes down to interactions between individuals,” says Goldsmith. “You wouldn’t even think of understanding how groups of people interact with each other while ignoring how individuals interact with each other.”

    The Importance of Single Molecule Observation

    Goldsmith has been chasing the allure of single molecules since he was a postdoctoral researcher at Stanford University more than a decade ago. There, he worked under the chemist W.E. Moerner, who received the Nobel Prize in chemistry in 2014 for developing the first method of using light to observe a single molecule.

    Since Moerner’s initial success, researchers around the world have devised and refined new ways to observe these tiny bits of matter.

    The method that the UW–Madison team developed relies on a device called an optical microresonator, or microcavity. As its name suggests, the microcavity is an extremely tiny space where light can be trapped in both space and time — at least for a few nanoseconds — where it can interact with a molecule. Microcavities are more commonly found in physics or electrical engineering laboratories, not chemistry labs. Goldsmith’s history of combining concepts from disparate scientific fields was recognized in 2022 with a Polymath award from Schmidt Futures.

    Microcavities are built from incredibly small mirrors fashioned right on top of a fiber optic cable. These fiber optic mirrors bounce the light back and forth many times very quickly within the microcavity.

    Potential Applications and Future Developments

    The researchers let molecules tumble into the cavity, let the light pass through it, and can not only detect the molecule’s presence, but also learn information about it, such as how fast it moves through water. This information can be used to determine the molecule’s shape, or conformation.

    “Conformation at the molecular level is incredibly important, particularly for thinking about how biomolecules interact with each other,” says Goldsmith. “Let’s say you have a protein and you have some small-molecule drug. You want to see if the protein’s druggable, which is to say, ‘Does the drug have some kind of major interaction with the protein?’ One way you might be able to see that is if it introduces a conformational change.”

    There are other ways to do that, but they require large amounts of sample material and time-consuming analyses. With the newly developed microcavity technique, Goldsmith says, “We can potentially build a black-box tool to give us the answer in tens of seconds.”

    The team, which included Lisa-Maria Needham, a former postdoctoral researcher who is now a laboratory director at the University of Cambridge, has filed a patent for the device. Goldsmith says the device and methods will now be refined over the next couple of years. In the meantime, he says he and his collaborators are already thinking about the many ways it could be useful.

    “We’re excited about many other applications in spectroscopy,” he says. “We hope we can use this as a stepping stone to other ways to learn about molecules.”

    Reference: “Label-free detection and profiling of individual solution-phase molecules” by Lisa-Maria Needham, Carlos Saavedra, Julia K. Rasch, Daniel Sole-Barber, Beau S. Schweitzer, Alex J. Fairhall, Cecilia H. Vollbrecht, Sushu Wan, Yulia Podorova, Anders J. Bergsten, Brandon Mehlenbacher, Zhao Zhang, Lukas Tenbrake, Jovanna Saimi, Lucy C. Kneely, Jackson S. Kirkwood, Hannes Pfeifer, Edwin R. Chapman and Randall H. Goldsmith, 8 May 2024, Nature.
    DOI: 10.1038/s41586-024-07370-8

    This research was primarily funded by the National Institutes of Health (R01GM136981), with resonator construction supported by the Q-NEXT Quantum Center, a U.S. Department of Energy, Office of Science, National Quantum Information Science Research Center, under award number DE-FOA-0002253.

    Biochemistry Molecules Quantum Chemistry University of Wisconsin-Madison
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New Chemical Recipes for Life’s Origins: Guiding Us to Distant Planets Inhabited by Extraterrestrials

    Nature’s Quantum Code: Unraveling the Secrets of Photosynthesis

    Lifelike Chemistry Created by Pioneering Research on Origin of Life

    “Proto-RNA Bases” Assemble in Water, Hint at Origins of Life

    Amino Acid Organocatalyst Halves Synthesis of Prostaglandin-Class Drugs

    Working to Recycle Greenhouse Gases

    Cost-Effective 3-D RNA Modeling Technique

    Foldit Players Remodel Catalyst Enzyme for Diels-Alder Reactions

    Chemists Work on Synthetic Cell Creation

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.