Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Defying Damage: New Theory Unlocks Secrets of Fracture Resistance
    Physics

    Defying Damage: New Theory Unlocks Secrets of Fracture Resistance

    By Politecnico di MilanoJuly 29, 20241 Comment3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Fracture Ground
    A recent study reveals how fractures in soft materials start and spread, paving the way for creating more durable, defect-free materials with substantial environmental benefits, spearheaded by an international research team led by Politecnico di Milano. Credit: Politecnico di Milano

    New research has uncovered the fracture mechanisms in soft materials, leading to potential advancements in creating durable, defect-free materials with wide-reaching benefits across various industries and positive environmental impacts.

    A groundbreaking theory has unveiled the physical mechanisms behind fractures in soft materials. This revolutionary discovery promises the development of defect-free materials with enhanced resistance and durability, contributing to environmental sustainability. The research was recently published in Physical Review Letters.

    “We have revealed that fracture propagates from the free surface of the material, starting from an elastic instability that breaks the symmetry of the object. Then, the rupture drastically extends with an intricate network of cracks spreading like a turbulence phenomenon similar to what we observe in fluids, like during vortex formation,” explains Pasquale Ciarletta from the MOX Laboratory, Department of Mathematics at Politecnico di Milano.

    Implications Across Industries

    This discovery stimulates significant applications in various technological sectors. For instance, in the production of micro and nano devices, where materials need to be extremely resistant and defect-free. Understanding how cracks form can lead to designing more robust and durable materials. In the consumer electronics field, this could lead to the creation of devices such as smartphones, tablets, and laptops with screens that better withstand shocks and drops, thus reducing the frequency of repairs and replacements. In the medical sector, implantable devices like pacemakers and prostheses could benefit from safer and longer-lasting materials, critically improving patient health.

    In the aerospace industry, understanding and preventing material fractures can lead to more robust and reliable structures, reducing the risks associated with space and air travel. “The results of this research not only pave the way for future studies aimed at developing materials with unprecedented mechanical properties but also have a positive environmental impact by reducing the need for frequent product replacements and decreasing waste. This can contribute to more sustainable production and more efficient use of natural resources,” concludes Davide Riccobelli from the Department of Mathematics at Politecnico di Milano.

    Reference: “Elastic Instability behind Brittle Fracture” by D. Riccobelli, P. Ciarletta, G. Vitale, C. Maurini and L. Truskinovsky, 13 June 2024, Physical Review Letters.
    DOI: 10.1103/PhysRevLett.132.248202

    The study was conducted by an international team of researchers, led at Politecnico di Milano by Davide Riccobelli and Pasquale Ciarletta, in collaboration with Sorbonne Université, École Polytechnique, and ESPCI in Paris, demonstrating that international collaborations continue to play a crucial role in pushing the boundaries of materials science.

    Materials Science
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    The Experimental Design of a Space-Time Crystal

    Room-Temperature Superconductivity Might Have Been Attained

    Probing the Effects of Light at the Atomic Scale

    New Insights Into How Superconducting Materials Interact With Magnetic Ones

    Path to Magnetic Vortex RAM Might be More Difficult Than Previously Assumed

    Electron-Electron Interactions are Critical to Graphene’s Extraordinary Properties

    SLAC Scientists Complete Terahertz Experiment

    LCLS Low-Energy Test Just Shy of the 284-Electronvolt Carbon Edge

    High-Energy Radiation is Refracted Setting the Stage for Gamma Optics

    1 Comment

    1. Bao-hua ZHANG on July 29, 2024 11:11 am

      The research was recently published in Physical Review Letters.
      VERY GOOD!

      Please witness the exemplary collaboration between theoretical physicists and experimentalists (https://scitechdaily.com/microscope-spacecrafts-most-precise-test-of-key-component-of-the-theory-of-general-relativity/#comment-854286). Contemporary physics has always lived in a self righteous children’s story world. Whose values have been overturned by such a comical and ridiculous reality?

      Misguided by the pseudo-scientific theory of Physical Review Letters (PRL), many researchers do not consider the similarities and differences between geometric shapes and physical reality in physics research, but indulge in imagination. Although scientific research can be imagined, it cannot be done recklessly.

      Is Physical Review Letters (PRL) trustworthy?

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.