Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Italian Scientists Develop New System for Producing Green Hydrogen Cheaply and Efficiently
    Chemistry

    Italian Scientists Develop New System for Producing Green Hydrogen Cheaply and Efficiently

    By Istituto Italiano di TecnologiaFebruary 10, 20242 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    A New System for Producing Green Hydrogen Cheaply and Efficiently
    IIT and BeDimensional’s researchers used nanoparticles of ruthenium, a noble metal that is similar to platinum in its chemical behavior but far cheaper, to serve as the active phase of the electrolyser’s cathode, leading to an increased efficiency of the overall electrolyzer. Credit: IIT-Istituto Italiano di Tecnologia

    A collaborative research effort between IIT and its spin-off BeDimensional has discovered a method utilizing ruthenium particles in conjunction with a solar-powered electrolysis system.

    What does it take to produce green hydrogen more efficiently and cheaply? Apparently, small ruthenium particles and a solar-powered system for water electrolysis. This is the solution identified by a joint team involving the Istituto Italiano di Tecnologia (Italian Institute of Technology, IIT) of Genoa, and BeDimensional S.p.A. (an IIT spin-off).

    The technology, developed in the context of the Joint-lab’s activities and recently published in two high-impact factor journals (Nature Communications and the Journal of the American Chemical Society) is based on a new family of electrocatalysts that could reduce the costs of green hydrogen production on an industrial scale.

    Hydrogen is considered as a sustainable energy vector, an alternative to fossil fuels. But not all hydrogen is the same when it comes to environmental impact. Indeed, the main way hydrogen is produced nowadays is through the methane steam reforming, a fossil fuel-based process that releases carbon dioxide (CO2) as a by-product.

    The hydrogen produced by this process is classified as “grey” (when CO2 is released into the atmosphere) or “blue” (when CO2 undergoes capture and geological storage). To significantly reduce emissions to zero by 2050 these processes must be replaced with more environmentally sustainable ones that deliver “green” (i.e. net-zero emissions) hydrogen. The cost of “green” hydrogen critically depends on the energy efficiency of the setup (the electrolyzer) that splits water molecules into hydrogen and oxygen.

    Technological Innovations in Hydrogen Production

    The researchers from the joint team of this discovery have developed a new method that guarantees greater efficiency than currently known methods in the conversion of electrical energy (the energy bias exploited to split water molecules) into the chemical energy stored in the hydrogen molecules that are produced. The team has developed a concept of catalyst and have used renewable energy sources, such as the electrical energy produced by a solar panel.

    Liberato Manna, Francesco Bonaccorso, Yong Zuo, Sebastiano Bellani, Marilena Zappia, Michele Ferri
    The new solution has been identified by a joint team involving the Istituto Italiano di Tecnologia (Italian Institute of Technology, IIT) of Genoa, and BeDimensional S.p.A. (an IIT spin-off). In the picture: Liberato Manna (IIT), Francesco Bonaccorso (BeDimensional), Yong Zuo (IIT), Sebastiano Bellani (BeDimensional), Marilena Zappia (BeDimensional), Michele Ferri (IIT). Credit: IIT-Istituto Italiano di Tecnologia

    “In our study, we have shown how it is possible to maximise the efficiency of a robust, well-developed technology, despite an initial investment that is slightly greater than what would be needed for a standard electrolyzer. This is because we are using a precious metal such as ruthenium”, commented Yong Zuo and Michele Ferri from the Nanochemistry Group at IIT in Genoa.

    The researchers used nanoparticles of ruthenium, a noble metal that is similar to platinum in its chemical behavior but far cheaper. Ruthenium nanoparticles serve as the active phase of the electrolyzer’s cathode, leading to an increased efficiency of the overall electrolyzer.

    “We have run electro-chemical analyses and tests under industrially-significant conditions that have enabled us to assess the catalytic activity of our materials. Additionally, theoretical simulations allowed us to understand the catalytic behavior of ruthenium nanoparticles at the molecular level; in other words, the mechanism of water splitting on their surfaces,” explained Sebastiano Bellani and Marilena Zappia from BeDimensional, who were involved in the discovery. “Combining the data from our experiments with additional process parameters, we have carried out a techno-economic analysis that demonstrated the competitiveness of this technology, when compared to state-of-the-art electrolyzers.”

    Cost-Effectiveness of the New Technology

    Ruthenium is a precious metal that is obtained in small quantities as a by-product of platinum extraction (30 tonnes per year, as compared to the annual production of 200 tonnes of platinum) but at a lower cost (18.5 dollars per gram as opposed to 30 dollars for platinum). The new technology involves the use of just 40 mg of ruthenium per kilowatt, in stark contrast with the extensive use of platinum (up to 1 gram per kilowatt) and iridium (between 1 and 2.5 grams per kilowatt, with iridium price being around 150 dollars per gram) that characterize proton-exchange membrane electrolyzers.

    By using ruthenium, the researchers at IIT and BeDimensional have improved the efficiency of alkaline electrolyzers, a technology that has been used for decades due to its robustness and durability. For example, this technology was on board of the Apollo 11 capsule that brought humanity to the moon in 1969. The new family of ruthenium-based cathodes for alkaline electrolyzers that has been developed is very efficient and has a long operating life, being therefore capable of reducing the production costs of green hydrogen.

    “In the future, we plan to apply this and other technologies, such as nanostructured catalysts based on sustainable two-dimensional materials, in up-scaled electrolyzers powered by electrical energy from renewable sources, including electricity produced by photovoltaic panels,” concluded the researchers.

    Reference: “Ru–Cu Nanoheterostructures for Efficient Hydrogen Evolution Reaction in Alkaline Water Electrolyzers” by Yong Zuo, Sebastiano Bellani, Gabriele Saleh, Michele Ferri, Dipak V. Shinde, Marilena Isabella Zappia, Joka Buha, Rosaria Brescia, Mirko Prato, Roberta Pascazio, Abinaya Annamalai, Danilo Oliveira de Souza, Luca De Trizio, Ivan Infante, Francesco Bonaccorso and Liberato Manna, 25 September 2023, Journal of the American Chemical Society.
    DOI: 10.1021/jacs.3c06726

    “High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode” by Yong Zuo, Sebastiano Bellani, Michele Ferri, Gabriele Saleh, Dipak V. Shinde, Marilena Isabella Zappia, Rosaria Brescia, Mirko Prato, Luca De Trizio, Ivan Infante, Francesco Bonaccorso and Liberato Manna, 4 August 2023, Nature Communications.
    DOI: 10.1038/s41467-023-40319-5

    Energy Green Energy Hydrogen Nanoparticles
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Banana Split: Extracting Hydrogen Fuel From Banana Peels

    Producing Clean Hydrogen From Solar Power and Wood Chips

    Nano-Chocolates That Store Hydrogen: Innovative Energy Carrier of the Future

    Advanced New Catalysts for More Efficient Clean Hydrogen Production

    Technological Breakthrough Allows Seamless Conversion of Ammonia to Green Hydrogen

    Speeding Toward Improved Hydrogen Fuel Production With a New Nanomaterial

    Clean Energy Breakthrough: Scientists Improve Light-Driven Water-Splitting to Produce Hydrogen

    Energy Industry Game-Changer: Using Rust and Organic Waste to Produce Hydrogen Fuel

    Devices That Make Fuel From Sunlight More Efficiently Possible With Nanoparticle Discovery From Electrode-Fitted Microscope

    2 Comments

    1. Cheeky kid on February 10, 2024 5:59 am

      The hydrogen I know of is colorless, not green.

      Reply
      • TampaJoey on February 10, 2024 1:13 pm

        It’s Italian hydrogen.

        Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.