Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Science»New Study Overturns Established Understanding of Associative Polymers
    Science

    New Study Overturns Established Understanding of Associative Polymers

    By University of Virginia School of Engineering and Applied ScienceJune 28, 2023No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Reversible Double Hydrogen Bond
    A 3D rendering illustrating two monomers forming a reversible double-hydrogen bond that slows down polymer movement without creating an elastic network. Credit: S. Nian et al., Phys. Rev. Lett. 130, 228101 (2023)

    A research team led by the University of Virginia has conducted a study on associative polymers, a type of material with unique self-healing and properties, which appears to challenge a long-held understanding of how the materials function at the molecular level.

    The study was led by Liheng Cai, an assistant professor of materials science and engineering and chemical engineering at UVA. Cai stated that this new discovery holds substantial significance due to the myriad of applications these materials have in daily life, ranging from engineering of recyclable plastics, to human tissue engineering, and even manipulating the viscosity of paint to prevent it from dripping.

    The discovery, which has been published in the journal Physical Review Letters, was enabled by new associative polymers developed in Cai’s lab at the UVA School of Engineering and Applied Science by his postdoctoral researcher Shifeng Nian and Ph.D. student Myoeum Kim. The breakthrough evolved from a theory Cai had co-developed before arriving at UVA in 2018.

    “Shifeng and Myoeum essentially created a novel experimental platform to study the dynamics of associative polymers in ways that weren’t possible before,” Cai said.

    “This gave us a new perspective on the polymers’ behavior and provides opportunities to improve our understanding of particularly challenging areas of study in polymer science. And from a technology standpoint, the research contributes to the development of self-healing materials with tailored properties.”

    Polymers are macromolecules composed of repeating units, or monomers. By rearranging or combining these units and tinkering with their bonds, scientists can design polymeric materials with specific characteristics.

    Polymers also can change states, from hard and rigid, like glass, to rubbery or even fluid depending on factors such as temperature or force — for example, pushing a solid gel through a hypodermic needle.

    Associative polymers are especially distinctive: Their moieties — a general term for molecular subunits with customizable physical properties — are held together by reversible bonds, meaning they can break apart and re-form.

    This process enables macroscopic properties inaccessible by conventional polymers. As a result, associative polymers provide solutions to some of the most pressing challenges in sustainability and health. For example, associative polymers are used as viscosity modifiers in fuels, to create tough self-healing polymers, and to engineer biomaterials with physical properties critical to tissue engineering and regeneration.

    One key to the UVA team’s work was overcoming a material feature that has stymied researchers for years. In the lab, scientists work with materials whose bonds can break and re-form at “laboratory time scales,” meaning within time frames they can observe through experiments. However, in nearly all existing experimental systems, the moieties aggregate into small clusters, which prevents a precise study of the relationship between reversible bonds and polymer behavior.

    Cai’s team developed new types of associative polymers where the bonds are evenly distributed throughout the material and at a wide range of densities. To confirm that their materials do not form clusters, the researchers collaborated with Mikhail Zhernenkov, a scientist at the U.S. Department of Energy’s Brookhaven National Laboratory. They conducted experiments using a sophisticated X-ray tool — the soft matter interfaces beamline — at the National Synchrotron Light Source II to reveal the inner makeup of the polymers without damaging the samples.

    These new associative polymers allowed Cai’s team to precisely study the effects of reversible interactions on the dynamics of associative polymers.

    Dynamics and behavior refer to traits such as the temperature at which molecule movement slows to a rigid “glassy” state, viscosity (how freely a material flows), and elasticity (its ability to snap back after being de-formed). A mix of these traits is often desirable to design, for example, a biomaterial compatible with human tissue that can reconstitute itself after injection.

    For 30 years, it had been accepted that when the reversible bonds remain intact, they act as crosslinkers, resulting in a rubbery material. But that’s not what the UVA-led team found.

    Collaborating with Shiwang Cheng, an assistant professor in Michigan State University’s chemical engineering and materials science department and an expert in flow dynamics, the team precisely measured the flow behavior of their polymers in a wide range of time scales.

    “This requires careful control over the local environment, such as temperature and humidity of the polymers,” Cheng said. “Over the years, my lab has developed a set of methods and systems for doing so.”

    The team found that the bonds can slow down polymer movement and dissipate energy without creating a rubbery network. Unexpectedly, the research showed that reversible interactions influence the polymers’ glassy qualities rather than their viscoelastic range.

    “Our associative polymers provide a system that allows for investigating separately the effects of reversible interactions on [polymer] movement and glassy behavior,” Cai said. “This may offer opportunities to improve the understanding of the challenging physics of glassy polymers like plastics.”

    From their experiments, Cai’s team also developed a new molecular theory that explains the behavior of associative polymers, which could shift thinking about how to engineer them with optimized properties such as high stiffness and rapid self-healing ability.

    Reference: “Dynamics of Associative Polymers with High Density of Reversible Bonds” by Shifeng Nian, Shalin Patil, Siteng Zhang, Myoeum Kim, Quan Chen, Mikhail Zhernenkov, Ting Ge, Shiwang Cheng and Li-Heng Cai, 31 May 2023, Physical Review Letters.
    DOI: 10.1103/PhysRevLett.130.228101

    In addition to Nian, Kim, Cheng and Zhernenkov, Cai collaborated with Ting Ge, a computational simulations expert and assistant professor of chemistry and biochemistry at the University of South Carolina, and Quan Chen from the State Key Lab of Polymer Physics and Chemistry at the Changchun Institute of Applied Chemistry, who provided the initial code for analyzing the flow behavior of polymers.

    The paper, “Dynamics of Associative Polymers with High Density of Reversible Bonds,” appears in the June 2 issue of Physical Review Letters, the flagship publication of the American Physical Society, and is featured as an Editors’ Suggestion — a distinction given to only one in six accepted letters. It also is featured as a lead article in Physics, the society’s online magazine.

    A National Science Foundation CAREER award supports Cai’s research on associative polymers. He also receives funding from UVA, including the LaunchPad for Diabetes Fund. His research team is continuing to work on establishing the scientific foundation for the use of these materials.

    Biomaterials Diabetes Materials Science Polymers University of Virginia
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Incredible Material Is Both Heat-Insulating and Heat-Conducting at the Same Time

    Researchers Create New Lightweight 18-Carat Gold That Weighs 5 to 10 Times Less

    New ‘Self-Cleaning’ Concrete Is Also Strong, Heat-Insulating and Soundproof

    Silk’s Nano-Scale Fibrils Give It Cryogenic Toughness to Thrive in Outer Space Temperatures

    Natural Marvels Lead to New Bio-Inspired Materials

    Rice Scientists Make Polymers with Light-Triggered Nanoparticles

    New Porous Hydrogel Could Improve the Success of Stem Cell Tissue Regeneration

    How Bombardier Beetles Produce an Explosive Chemical Jet

    Self-Healing Polymer Mechanism Rediscovered After 60 Years

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.