Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Scientists Unearth Primordial Photoredox Catalyst
    Chemistry

    Scientists Unearth Primordial Photoredox Catalyst

    By WileySeptember 4, 20231 Comment3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Chemistry Catalyst Concept
    Researchers have demonstrated that a solid formed from ammonia and methane plasma can use sunlight to catalyze amine-to-imine conversions, a process potentially pivotal in the formation of early biomolecules. The study suggests the primordial atmosphere may have provided the necessary catalysts for such conversions, supporting the evolution of early RNA molecules.

    Nitrogen-doped graphite catalyzes reactions to give early biomolecules.

    The sun, pivotal in powering the first biochemical molecules on Earth, facilitated crucial reactions along with catalysts that sped up chemical processes. A group of researchers has recently demonstrated that a substance derived from the interaction of ammonia and methane plasma has the potential to harness light energy to facilitate amine-to-imine transformations.

    This mechanism could have been a significant contributor to the formation of the earliest biomolecules. The findings were recently published in the journal Angewandte Chemie.

    Between three and four billion years ago, on primordial Earth, the first biomolecules were being formed prior to an explosion of life. These early chemical reactions, however, required catalysts. Xinchen Wang and a team of researchers from Fuzhou University in China have discovered that the primordial atmosphere itself could have served as a source for these catalysts.

    Using methane and ammonia gases, which were most likely present in the hot gas mixture shrouding the world in the Archean age, the team used chemical vapor deposition to produce nitrogenous carbon compounds as possible catalysts. They found that, in a reaction chamber, molecules condensed out of an ammonia and methane plasma onto a surface, quickly growing to form a solid nitrogenous carbon polymer similar to nitrogen-doped graphite.

    As the team observed, the irregularly incorporated nitrogen atoms gave this polymer catalytically active sites and an electron structure that enabled it to be excited by light. The researchers then turned to proving the extent to which the substance could reduce or oxidize other substances under the effect of light.

    One of the most significant reactions on early Earth may have been imine formation. Imines, also referred to as Schiff bases, are a dehydrogenated form of amines, compounds composed of carbon, nitrogen, and hydrogen. Many chemists assume that, on primordial Earth, imines may have served in the formation of the first hereditary molecules of ribonucleic acid (RNA). Wang and his team could show that their plasma-generated catalyst can convert amines to imines using nothing other than sunlight.

    The team says that carbon nitride-based photocatalysts, such as the plasma-generated substance, could have lasted for millions of years and produced important chemical intermediates. In addition, they could also have served as a source of carbon- and nitrogen-containing compounds. By demonstrating that it is possible to produce such a catalyst using only the gases and conditions present in the atmosphere of early Earth, the study sheds new light on the possible evolutionary path taken by biomolecules.

    Reference: “Plasma-Enhanced Chemical-Vapor-Deposition Synthesis of Photoredox-Active Nitrogen-Doped Carbon from NH3 and CH4 Gases” by Yan Wang, Yuanxing Fang, Yankun Wang, Haisu Wu, Masakazu Anpo, Jimmy C. Yu and Xinchen Wang, 22 June 2023, Angewandte Chemie International Edition.
    DOI: 10.1002/anie.202307236

    The study was funded by the National Key Technologies R&D Program of China, the National Natural Science Foundation of China, and the 111 Project.

    Catalysts Evolution RNA Wiley
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New Insights Into the Origins of Life: How the First Molecules Survived Earth’s Primordial Conditions

    Redefining Molecular Physics: The Surprising Phenomenon of Kinetic Asymmetry

    The Origin of Life on Earth: A Paradigm Shift

    New Electrocatalyst Produces Liquid Fuels From Carbon Dioxide

    Amino Acid Organocatalyst Halves Synthesis of Prostaglandin-Class Drugs

    Searching for an Efficient Way to Make Methanol

    Zeolite Catalyst Creates P-Xylene From Biomass

    Working to Recycle Greenhouse Gases

    Gold Improves the Performance of Nanoparticle Fuel-Cell Reactions

    1 Comment

    1. Ken Towe on September 5, 2023 9:14 am

      This is backwards…”The Sun, pivotal in powering the first biochemical molecules on Earth.” They must have forgotten about the damaging role of solar UV on early biochemical reactions. Without at least a primitive ozone screen these reactions would have a serious problem taking place, much less going forward to make cells capable of photosynthesis.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.