Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Naloxone Alternative: CBD (Cannabidiol) Compounds Could Reverse Opioid Overdoses
    Chemistry

    Naloxone Alternative: CBD (Cannabidiol) Compounds Could Reverse Opioid Overdoses

    By American Chemical SocietyMarch 29, 20231 Comment6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Marijuana-Derived Compounds Could Reverse Opioid Overdoses
    CBD (yellow stick structure) interferes with binding of an opioid (green and red) by stabilizing an opioid receptor (gray) in its inactive form. Credit: Charles Kuntz

    As the U.S. pushes for wider access to naloxone, a fast-acting opioid antidote, researchers are exploring cannabidiol (CBD) as a potential alternative due to its reduced effectiveness against synthetic opioids like fentanyl. A team has reported CBD-based compounds that decrease fentanyl binding and enhance naloxone’s effects. The findings will be presented at the ACS Spring 2023 hybrid meeting.

    There’s been a recent push in the U.S. to make naloxone — a fast-acting opioid antidote — available without a prescription. This medication has saved lives, but it’s less effective against powerful synthetic opioids, such as fentanyl. In an interesting twist, researchers are now looking to cannabidiol (CBD), a component of marijuana, as a possible alternative to the popular antidote. Today, a team reports compounds based on CBD that reduce fentanyl binding and boost the effects of naloxone.

    The researchers will present their results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2023 is a hybrid meeting being held virtually and in-person March 26–30, and features more than 10,000 presentations on a wide range of science topics.

    “Fentanyl-class compounds account for more than 80% of opioid overdose deaths, and these compounds aren’t going anywhere — it’s just too much of an economic temptation for dealers,” says Alex Straiker, Ph.D., the project’s co-principal investigator. “Given that naloxone is the only drug available to reverse overdoses, I think it makes sense to look at alternatives.”

    A new option could take one of two forms, according to Michael VanNieuwenhze, Ph.D., the other co-principal investigator for the project.

    “Ideally, we would like to discover a more potent replacement for naloxone,” VanNieuwenhze says. “However, finding something that works synergistically with it, reducing the amount needed to treat an overdose, would also be a success.”

    Jessica Gudorf, a graduate student in VanNieuwenhze’s group, is presenting the work at the meeting. All of the researchers are at Indiana University Bloomington.

    Opioids are a class of compounds that are prescribed to treat pain and are sometimes sold illegally. If taken in excess, the drugs can interfere with breathing, making them potentially lethal. The U.S. Centers for Disease Control and Prevention estimates that more than half a million people died from overdoses involving opioids between 1999 and 2020. That toll continues to climb.

    Compared to other compounds in this class, such as heroin or morphine, fentanyl, and its other synthetic relatives bind more tightly to opioid receptors in the brain. Naloxone reverses an overdose by competing with the drug molecules for the same binding sites on the receptors. But because fentanyl binds so readily, it has a leg up on naloxone, and growing evidence suggests that reversing these kinds of overdoses may require multiple doses of the antidote.

    At this point, researchers have exhaustively studied the strategy naloxone takes, but they have yet to find any way to improve on its performance, Gudorf says. “Our work opens the door to making new blockers that work through a different mechanism,” she explains.

    Earlier research suggesting that CBD can interfere with opioid binding inspired the current effort. In research published in 2006, a group based in Germany concluded that CBD hampered opioid binding indirectly, by altering the shape of the receptor. When used with naloxone, they found CBD accelerated the medication’s effect, forcing the receptors to release opioids.

    To augment these effects, Gudorf altered CBD’s structure to generate derivatives. Taryn Bosquez-Berger, a graduate student in Straiker’s group, tested these new compounds in cells with a substance called DAMGO, an opioid used only in lab studies. To measure their success, she monitored a molecular signal that diminishes when this type of drug binds. Armed with feedback from these experiments, Gudorf refined the structures she generated.

    In the end, they narrowed the field to 15, which they tested at varying concentrations against fentanyl, with and without naloxone. Several derivatives could reduce fentanyl binding even at what Bosquez-Berger described as “incredibly low” concentrations, while also outperforming naloxone’s opioid-blocking performance. Two of these also showed a synergistic effect when combined with the antidote.

    The team has since begun testing the most successful derivatives in mice. In these experiments, they are investigating whether these compounds alter behaviors associated with taking fentanyl.

    “We hope our approach leads to the birth of new therapeutics, which, in the hands of emergency personnel, could save even more lives,” Bosquez-Berger says.

    The researchers acknowledge support and funding from the Indiana University Grand Challenges Program.

    Meeting: ACS Spring 2023

    Title
    Progress towards more efficacious medicine: Antibiotics and antidotes

    Abstract
    Development of innovative and efficacious medicine used for the treatment of health conditions and devastating diseases is at the forefront of pharmaceutical research as the results cannot only decrease overall drug cost, minimize adverse effects, and increase the therapeutic window, but also improve, prolong, and save lives. Globally, we are amidst severe health care crises related to bacterial resistance and opioid overdoses, which together claim millions of lives every year. Therefore, the development of more effective antibiotics and antidotes are necessary.

    Antibiotic: One antibiotic that is underexplored is hypeptin, a non-ribosomal antibiotic that exhibits a broad range of activity against Gram-positive bacteria, including resistant strains, and is known to inhibit bacterial cell wall synthesis in a multifaceted approach. However, its exact mechanism(s) of action (MOA) is still unknown. To aid in elucidating its MOA, the design and progress towards the first total synthesis of hypeptin will be discussed along with activity-probing synthetic analogs.

    Antidote: Naloxone, the only available antidote for opiate overdose, has a reduced therapeutic effect against fentanyl-class synthetic opioids as these potent agonists outcompete naloxone (antagonist) for the orthosteric site of the mu opioid receptor (µOR). Ergo, an alternative strategy to competitive antagonism is needed. Herein, investigations into the pharmacophore of hit compound (-)-cannabidiol (CBD) will be explored through structure activity relationship (SAR) studies with the goal of improving affinity and potency of this negative allosteric modulator (NAM). Through biological and computational efforts, fifteen of the fifty synthesized CBD analogs reversed µOR-mediated cyclic AMP inhibition induced by fentanyl, with several exhibiting much greater NAM potency than CBD. Additionally, the synergistic effects between naloxone and CBD analogs for the dissociation of fentanyl from the orthosteric site will be discussed.

    Addiction American Chemical Society Cannabis CBD Opioids
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Scientists Develop Groundbreaking Handheld Test for Detecting Fentanyl With 98% Accuracy

    Why Does Cannabis Smell Skunky? New Compounds Detected With 2D Gas Chromatography

    Weeding Out the Truth: Cannabis May Be Linked to Development of Opioid Use Disorders

    Can We Make Opioids Less Addictive? [Video]

    Access to Legal Cannabis Stores Linked to Reduction in Opioid Deaths

    Contrary to Some Claims, Cannabis Use Appears to Encourage, Not Replace, Opioid Use

    Pharma Aims to Make a Better CBD – Up to 50 Times More Potent

    Study Finds No Evidence to Suggest Cannabis Helps Patients Stop Using Opioids

    Chocolate Interferes With Cannabis Potency Testing

    1 Comment

    1. Valve on March 29, 2023 4:49 pm

      Bravo.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.