Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Biology»MIT Scientists Discover New Antibiotic Candidates
    Biology

    MIT Scientists Discover New Antibiotic Candidates

    By Anne Trafton, Massachusetts Institute of TechnologyAugust 21, 20181 Comment5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Engineers Discover New Antibiotic Candidates
    MIT researchers have discovered that peptides normally secreted by cells that line the stomach have previously unknown antimicrobial activity. Credit: Ella Maru Studio

    The human body produces many antimicrobial peptides that help the immune system fend off infection. Scientists hoping to harness these peptides as potential antibiotics have now discovered that other peptides in the human body can also have potent antimicrobial effects, expanding the pool of new antibiotic candidates.

    In the new study, researchers from MIT and the University of Naples Federico II found that fragments of the protein pepsinogen, an enzyme used to digest food in the stomach, can kill bacteria such as Salmonella and E. coli.

    The researchers believe that by modifying these peptides to enhance their antimicrobial activity, they may be able to develop synthetic peptides that could be used as antibiotics against drug-resistant bacteria.

    “These peptides really constitute a great template for engineering. The idea now is to use synthetic biology to modify them further and make them more potent,” says Cesar de la Fuente-Nunez, an MIT postdoc and Areces Foundation Fellow, and one of the senior authors of the paper.

    Other MIT authors of the paper, which appears in the August 20 issue of the journal ACS Synthetic Biology, are Timothy Lu, an associate professor of electrical engineering and computer science and of biological engineering, and Marcelo Der Torossian Torres, a former visiting student.

    Discovering new functions

    Antimicrobial peptides, which are found in nearly all living organisms, can kill many microbes, but they are typically not powerful enough to act as antibiotic drugs on their own. Many scientists, including de la Fuente-Nunez and Lu, have been exploring ways to create more potent versions of these peptides, in hopes of finding new weapons to combat the growing problem posed by antibiotic-resistant bacteria.

    In this study, the researchers wanted to explore whether other proteins found in the human body, outside of the previously known antimicrobial peptides, might also be able to kill bacteria. To that end, they developed a search algorithm that analyzes databases of human protein sequences in search of similarities to known antimicrobial peptides.

    “It’s a data-mining approach to very easily find peptides that were previously unexplored,” de la Fuente-Nunez says. “We have patterns that we know are associated with classical antimicrobial peptides, and the search engine goes through the database and finds patterns that look similar to what we know makes up a peptide that kills bacteria.”

    In a screen of nearly 2,000 human proteins, the algorithm identified about 800 with possible antimicrobial activity. In the ACS Synthetic Biology paper, the research team focused on the peptide pepsinogen, whose role is to break down proteins in food. After pepsinogen is secreted by cells that line the stomach, hydrochloric acid in the stomach mixes with pepsinogen, converting it into pepsin A, which digests proteins, and into several other small fragments.

    Those fragments, which previously had no known functions, showed up as candidates in the antimicrobial screen.

    Once the researchers identified those candidates, they tested them against bacteria grown in lab dishes and found that they could kill a variety of microbes, including foodborne pathogens, such as Salmonella and E. coli, as well as others, including Pseudomonas aeruginosa, which often infects the lungs of cystic fibrosis patients. This effect was seen at both acidic pH, similar to that of the stomach, and neutral pH.

    “The human stomach is attacked by many pathogenic bacteria, so it makes sense that we would have a host defense mechanism to defend ourselves from such attacks,” de la Fuente-Nunez says.

    More potent drugs

    The researchers also tested the three pepsinogen fragments against a Pseudomonas aeruginosa skin infection in mice, and found that the peptides significantly reduced the infections. The exact mechanism by which the peptides kill bacteria is unknown, but the researchers’ hypothesis is that their positive charges allow the peptides to bind to the negatively charged bacterial membranes and poke holes in them, a mechanism similar to that of other antimicrobial peptides.

    The researchers now hope to modify these peptides to make them more effective, so that they could be potentially used as antibiotics. They are also seeking new peptides from organisms other than humans, and they plan to further investigate some of the other human peptides identified by the algorithm.

    “We have an atlas of all these molecules, and the next step is to demonstrate whether each of them actually has antimicrobial properties and whether each of them could be developed as a new antimicrobial,” de la Fuente-Nunez says.

    Reference: “Identification of Novel Cryptic Multifunctional Antimicrobial Peptides from the Human Stomach Enabled by a Computational–Experimental Platform” by Katia Pane, Valeria Cafaro, Angela Avitabile, Marcelo Der Torossian Torres, Adriana Vollaro, Eliana De Gregorio, Maria Rosaria Catania, Antimo Di Maro, Andrea Bosso, Giovanni Gallo, Anna Zanfardino, Mario Varcamonti, Elio Pizzo, Alberto Di Donato, Timothy K. Lu, Cesar de la Fuente-Nunez and Eugenio Notomista, 20 August 2018, ACS Synthetic Biology.
    DOI: 10.1021/acssynbio.8b00084

    Antibiotics Immunobiology Medicine MIT Synthetic Biology
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New Engineered Bacteria Could Prevent Side Effects of Antibiotics

    Engineered Bacteria Could Lead to Better Drugs

    Two-Pronged Immune Response Destroys Tumors

    Complex Synthetic Biology Circuit Can Detect Four Different Molecules

    Newly Designed Transcription Factors Can Bind to DNA and Turn on Specific Genes

    Crowding Causes Internal Cell Structure Alignment

    Stimulating Resolution Programs Limit Consequences of Infection

    Proteins in Mucus Offer Immune Protection

    Understanding Antibiotics and Their Role in Killing Bacteria

    1 Comment

    1. Ted Herrman on October 20, 2019 5:32 am

      Still, the question of why the conditions to successfully create life (and did so) existed at an earlier time; but we have been unable to do it again. Every attempt to vary, mix, and adjust chemical and physical environments has failed.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.