Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Electronics That Defy Venus’ Heat: How Gallium Nitride Could Revolutionize Space Exploration
    Technology

    Electronics That Defy Venus’ Heat: How Gallium Nitride Could Revolutionize Space Exploration

    By Adam Zewe, Massachusetts Institute of TechnologyJuly 1, 20242 Comments8 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    High Temperatures Electronic Devices Made From Gallium Nitride
    Researchers studied how temperatures up to 500 degrees Celsius would affect electronic devices made from gallium nitride, a key step in their multiyear research effort to develop electronics that can operate in extremely hot environments, like the surface of Venus. Credit: MIT News; iStock

    Researchers are turning to gallium nitride for high-temperature applications such as Venus exploration, due to its ability to withstand temperatures above 500 degrees Celsius.

    A recent study by MIT and other institutions has shown that this material, along with its ohmic contacts, remains structurally stable even at these high temperatures. The study involved building gallium nitride devices and testing them under high-temperature conditions, revealing promising results for future electronics in extreme environments.

    Venus Exploration and Gallium Nitride

    On the scorching surface of Venus, temperatures can climb to 480° Celsius /900° Fahrenheit, which is hot enough to melt lead. This makes it an inhospitable place for humans and machines alike. One reason scientists have not yet been able to send a rover to the planet’s surface is that silicon-based electronics can’t operate in such extreme temperatures for an extended period of time.

    For high-temperature applications like Venus exploration, researchers have recently turned to gallium nitride, a unique material that can withstand temperatures of 500 degrees or more.

    The material is already used in some terrestrial electronics, like phone chargers and cell phone towers, but scientists don’t have a good grasp of how gallium nitride devices would behave at temperatures beyond 300 degrees, which is the operational limit of conventional silicon electronics.

    Research Findings on Gallium Nitride

    In a new paper published in the journal Applied Physics Letters, which is part of a multiyear research effort, a team of scientists from the Massachusetts Institute of Technology (MIT) and elsewhere sought to answer key questions about the material’s properties and performance at extremely high temperatures.

    They studied the impact of temperature on the ohmic contacts in a gallium nitride device. Ohmic contacts are key components that connect a semiconductor device with the outside world.

    The researchers found that extreme temperatures didn’t cause significant degradation to the gallium nitride material or contacts. They were surprised to see that the contacts remained structurally intact even when held at 500 degrees Celsius for 48 hours.

    Future Directions in High-Temperature Electronics

    Understanding how contacts perform at extreme temperatures is an important step toward the group’s next goal of developing high-performance transistors that could operate on the surface of Venus. Such transistors could also be used on Earth in electronics for applications like extracting geothermal energy or monitoring the inside of jet engines.

    “Transistors are the heart of most modern electronics, but we didn’t want to jump straight to making a gallium nitride transistor because so much could go wrong. We first wanted to make sure the material and contacts could survive, and figure out how much they change as you increase the temperature. We’ll design our transistor from these basic material building blocks,” says John Niroula, an electrical engineering and computer science (EECS) graduate student and lead author of the paper.

    His co-authors include Qingyun Xie PhD ’24; Mengyang Yuan PhD ’22; EECS graduate students Patrick K. Darmawi-Iskandar and Pradyot Yadav; Gillian K. Micale, a graduate student in the Department of Materials Science and Engineering; senior author Tomás Palacios, the Clarence J. LeBel Professor of EECS, director of the Microsystems Technology Laboratories, and a member of the Research Laboratory of Electronics; as well as collaborators Nitul S. Rajput of the Technology Innovation Institute of the United Arab Emirates; Siddharth Rajan of Ohio State University; Yuji Zhao of Rice University; and Nadim Chowdhury of Bangladesh University of Engineering and Technology.

    Resistance and Performance Under Heat

    While gallium nitride has recently attracted much attention, the material is still decades behind silicon when it comes to scientists’ understanding of how its properties change under different conditions. One such property is resistance, the flow of electrical current through a material.

    A device’s overall resistance is inversely proportional to its size. But devices like semiconductors have contacts that connect them to other electronics. Contact resistance, which is caused by these electrical connections, remains fixed no matter the size of the device. Too much contact resistance can lead to higher power dissipation and slower operating frequencies for electronic circuits.

    “Especially when you go to smaller dimensions, a device’s performance often ends up being limited by contact resistance. People have a relatively good understanding of contact resistance at room temperature, but no one has really studied what happens when you go all the way up to 500 degrees,” Niroula says.

    Testing Methodologies and Results

    For their study, the researchers used facilities at MIT.nano to build gallium nitride devices known as transfer length method structures, which are composed of a series of resistors. These devices enable them to measure the resistance of both the material and the contacts.

    They added ohmic contacts to these devices using the two most common methods. The first involves depositing metal onto gallium nitride and heating it to 825 degrees Celsius for about 30 seconds, a process called annealing.

    The second method involves removing chunks of gallium nitride and using a high-temperature technology to regrow highly doped gallium nitride in its place, a process led by Rajan and his team at Ohio State. The highly doped material contains extra electrons that can contribute to current conduction.

    “The regrowth method typically leads to lower contact resistance at room temperature, but we wanted to see if these methods still work well at high temperatures,” Niroula says.

    Stability and Performance at High Temperatures

    They tested devices in two ways. Their collaborators at Rice University, led by Zhao, conducted short-term tests by placing devices on a hot chuck that reached 500 degrees Celsius and taking immediate resistance measurements.

    At MIT, they conducted longer-term experiments by placing devices into a specialized furnace the group previously developed. They left devices inside for up to 72 hours to measure how resistance changes as a function of temperature and time.

    Long-Term Stability and Improvements

    Microscopy experts at MIT.nano (Aubrey N. Penn) and the Technology Innovation Institute (Nitul S. Rajput) used state-of-the-art transmission electron microscopes to see how such high temperatures affect gallium nitride and the ohmic contacts at the atomic level.

    “We went in thinking the contacts or the gallium nitride material itself would degrade significantly, but we found the opposite. Contacts made with both methods seemed to be remarkably stable,” says Niroula.

    While it is difficult to measure resistance at such high temperatures, their results indicate that contact resistance seems to remain constant even at temperatures of 500 degrees, for around 48 hours. And just like at room temperature, the regrowth process led to better performance.

    The material did start to degrade after being in the furnace for 48 hours, but the researchers are already working to boost long-term performance. One strategy involves adding protective insulators to keep the material from being directly exposed to the high-temperature environment.

    Future Prospects in Microelectronics

    Moving forward, the scientists plan to use what they learned in these experiments to develop high-temperature gallium nitride transistors.

    “In our group, we focus on innovative, device-level research to advance the frontiers of microelectronics, while adopting a systematic approach across the hierarchy, from the material level to the circuit level. Here, we have gone all the way down to the material level to understand things in depth. In other words, we have translated device-level advancements to circuit-level impact for high-temperature electronics, through design, modeling, and complex fabrication. We are also immensely fortunate to have forged close partnerships with our longtime collaborators in this journey,” Xie says.

    Reference: “High temperature stability of regrown and alloyed Ohmic contacts to AlGaN/GaN heterostructure up to 500 °C” by John Niroula, Qingyun Xie, Nitul S. Rajput, Patrick K. Darmawi-Iskandar, Sheikh Ifatur Rahman, Shisong Luo, Rafid Hassan Palash, Bejoy Sikder, Mengyang Yuan, Pradyot Yadav, Gillian K. Micale, Nadim Chowdhury, Yuji Zhao, Siddharth Rajan and Tomás Palacios, 15 May 2024, Applied Physics Letters.
    DOI: 10.1063/5.0191297

    This work was funded, in part, by the U.S. Air Force Office of Scientific Research, Lockheed Martin Corporation, the Semiconductor Research Corporation through the U.S. Defense Advanced Research Projects Agency, the U.S. Department of Energy, Intel Corporation, and the Bangladesh University of Engineering and Technology.

    Fabrication and microscopy were conducted at MIT.nano, the Semiconductor Epitaxy and Analysis Laboratory at Ohio State University, the Center for Advanced Materials Characterization at the University of Oregon, and the Technology Innovation Institute of the United Arab Emirates.

    Electrical Engineering MIT Semiconductors Venus
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    MIT Engineers Revolutionize Semiconductor Chip Technology With Atom-Thin Transistors

    MIT Discovers Semiconductor That Can Perform Far Better Than Silicon

    MIT Engineers Build LEGO-Like Reconfigurable Artificial Intelligence Chip

    Developing Next-Generation Electronic Devices by Harnessing Terahertz Waves

    New Chip Can Decode Any Type of Data Sent Across a Network

    LED Developed That Can Be Integrated Directly Into Computer Chips

    MIT Discovery Offers New Promise for Nonsilicon Computer Transistors

    Chips As Mini Internets: CPU Cores Communicate by Networks Instead of Bus

    Analyzing the Environmental Costs and Impacts of Technology

    2 Comments

    1. Boba on July 2, 2024 5:28 am

      Why do we need space exploration again?

      Reply
    2. Tristram Carlyon on July 2, 2024 8:21 am

      Tristram Carlyon: I find it odd that only the extreme temperature functionality of gallium nitride components was referenced for use on the planet Venus. What about the several dozen atmospheres of pressure at ground level there? Not a whisper in the entire article. Tut,tut.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.