Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»MIT Physicists Forge a Five-Lane Quantum Superhighway for Electrons
    Physics

    MIT Physicists Forge a Five-Lane Quantum Superhighway for Electrons

    By Elizabeth A. Thomson, MIT Materials Research LaboratoryJune 28, 20242 Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Electron Superhighway
    Artist’s rendition of a newly discovered superhighway for electrons that can occur in rhombohedral graphene. “We found a goldmine, and every scoop is revealing something new,” says MIT Assistant Professor Long Ju. Credit: Sampson Wilcox/Research Laboratory of Electronics

    MIT physicists have developed a new form of graphene, creating a five-lane electron superhighway that allows for ultra-efficient electron movement without energy loss.

    This breakthrough in rhombohedral pentalayer graphene could transform low-power electronic devices and operates via the quantum anomalous Hall effect at zero magnetic field.

    MIT physicists and their collaborators have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more.

    The work, reported recently in the journal Science, is one of several important discoveries by the same team over the past year involving a material that is a unique form of graphene.

    “This discovery has direct implications for low-power electronic devices because no energy is lost during the propagation of electrons, which is not the case in regular materials where the electrons are scattered,” says Long Ju, an assistant professor in the Department of Physics and corresponding author of the Science paper.

    The phenomenon is akin to cars traveling down an open expressway as opposed to those moving through neighborhoods. The neighborhood cars can be stopped or slowed by other drivers making abrupt stops or U-turns that disrupt an otherwise smooth commute.

    A New Material: Rhombohedral Graphene

    The material behind this work, known as rhombohedral pentalayer graphene, was discovered two years ago by physicists led by Ju. “We found a goldmine, and every scoop is revealing something new,” says Ju, who is also affiliated with MIT’s Materials Research Laboratory.

    In a Nature Nanotechnology paper last October, Ju and colleagues reported the discovery of three important properties arising from rhombohedral graphene. For example, they showed that it could be topological, or allow the unimpeded movement of electrons around the edge of the material but not through the middle. That resulted in a superhighway, but required the application of a large magnetic field some tens of thousands times stronger than the Earth’s magnetic field.

    MIT Rhombohedral Graphene Researchers
    Six of the MIT physicists who created a five-lane superhighway for electrons are (left to right) graduate students Jixiang Yang, Junseok Seo, and Tonghang Han; visiting undergraduate student Yuxuan Yao; Assistant Professor Long Ju; and postdoc Zhengguang Lu. Credit: Shenyong Ye

    Enhancing Graphene’s Electron Channels

    In the current work, the team reports creating the superhighway without any magnetic field.

    Tonghang Han, an MIT graduate student in physics, is a co-first author of the paper. “We are not the first to discover this general phenomenon, but we did so in a very different system. And compared to previous systems, ours is simpler and also supports more electron channels.” Explains Ju, “other materials can only support one lane of traffic on the edge of the material. We suddenly bumped it up to five.”

    Additional co-first authors of the paper who contributed equally to the work are Zhengguang Lu and Yuxuan Yao. Lu is a postdoc in the Materials Research Laboratory. Yao conducted the work as a visiting undergraduate student from Tsinghua University. Other authors are MIT professor of physics Liang Fu; Jixiang Yang and Junseok Seo, both MIT graduate students in physics; Chiho Yoon and Fan Zhang of the University of Texas at Dallas; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

    How It Works

    Graphite, the primary component of pencil lead, is composed of many layers of graphene, a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. Rhombohedral graphene is composed of five layers of graphene stacked in a specific overlapping order.

    Ju and colleagues isolated rhombohedral graphene thanks to a novel microscope Ju built at MIT in 2021 that can quickly and relatively inexpensively determine a variety of important characteristics of a material at the nanoscale. Pentalayer rhombohedral stacked graphene is only a few billionths of a meter thick.

    In the current work, the team tinkered with the original system, adding a layer of tungsten disulfide (WS2). “The interaction between the WS2 and the pentalayer rhombohedral graphene resulted in this five-lane superhighway that operates at zero magnetic field,” says Ju.

    Comparison to Superconductivity

    The phenomenon that the Ju group discovered in rhombohedral graphene that allows electrons to travel with no resistance at zero magnetic field is known as the quantum anomalous Hall effect. Most people are more familiar with superconductivity, a completely different phenomenon that does the same thing but happens in very different materials.

    Ju notes that although superconductors were discovered in the 1910s, it took some 100 years of research to coax the system to work at the higher temperatures necessary for applications. “And the world record is still well below room temperature,” he notes.

    Similarly, the rhombohedral graphene superhighway currently operates at about 2 kelvins, or -456 degrees Fahrenheit. “It will take a lot of effort to elevate the temperature, but as physicists, our job is to provide the insight; a different way for realizing this [phenomenon],” Ju says.

    Implications and Future Prospects

    The discoveries involving rhombohedral graphene came as a result of painstaking research that wasn’t guaranteed to work. “We tried many recipes over many months,” says Han, “so it was very exciting when we cooled the system to a very low temperature and [a five-lane superhighway operating at zero magnetic field] just popped out.”

    Says Ju, “it’s very exciting to be the first to discover a phenomenon in a new system, especially in a material that we uncovered.”

    Reference: “Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene” by Tonghang Han, Zhengguang Lu, Yuxuan Yao, Jixiang Yang, Junseok Seo, Chiho Yoon, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Fan Zhang and Long Ju, 9 May 2024, Science.
    DOI: 10.1126/science.adk9749

    This work was supported by a Sloan Fellowship; the U.S. National Science Foundation; the U.S. Office of the Under Secretary of Defense for Research and Engineering; the Japan Society for the Promotion of Science KAKENHI; and the World Premier International Research Initiative of Japan.

    2D Materials Graphene Materials Science MIT Nanotechnology Popular Superconductivity
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    MIT Physicists Transform Pencil Lead Into Electronic “Gold”

    MIT Physicists Discover Way To Switch Superconductivity On and Off in “Magic-Angle” Graphene

    MIT Physicists Discover a Family of “Magic” Superconducting Graphene Structures

    Discovery of Strong Electron Correlation in a 2D Material Could Help Engineer Unconventional Superconductivity

    MIT Physicists Discover “Magic-Angle” Trilayer Graphene May Be a Rare, Magnet-Proof Superconductor

    MIT Turns “Magic” Superconducting Material Into Versatile Electronic Devices

    Physicists Discover Important and Unexpected Electronic Property of Graphene – Could Power Next-Generation Computers

    “The Biggest Bang” – Physicists Create Tunable Superconductivity in Twisted Graphene “Nanosandwich”

    Researchers Control Light Emission by Pairing Exotic 2D Materials

    2 Comments

    1. Boba on June 28, 2024 2:13 pm

      Tax dollars at work, ladies and gentlemen!

      Reply
    2. Bao-hua ZHANG on June 28, 2024 4:16 pm

      The team reports creating the superhighway without any magnetic field.、
      Please ask researchers to think deeply:
      1. What is electron?
      2. What is quantum?
      3. What is the spacetime foundation of electrons and quantum motion?
      4. Is there a correlation between mathematical graphics and physical reality?
      5. Why can mathematics become the language of science?
      6. Can the microcosm be imagined without mathematics?
      7. Is the physical phenomenon observed in physical experiments the natural essence of things?
      If researchers are really interested in science and physics, you can browse https://zhuanlan.zhihu.com/p/693933588 and https://zhuanlan.zhihu.com/p/595280873.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.