Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»MIT Uncovers Surprising Wave Activity on Titan, Saturn’s Largest Moon
    Space

    MIT Uncovers Surprising Wave Activity on Titan, Saturn’s Largest Moon

    By Jennifer Chu, Massachusetts Institute of TechnologyJune 26, 20246 Comments8 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Titan's Rimmed Lakes
    The surface of Titan. Simulations by MIT geologists indicate that the lakes and seas on Titan, Saturn’s largest moon, are shaped by wave-driven erosion. Credit: NASA/JPL-Caltech

    Researchers discover that wave activity on Saturn’s largest moon may be strong enough to erode the coastlines of lakes and seas.

    MIT researchers have used simulations to suggest that the shorelines of Titan, Saturn’s largest moon, are shaped by waves. This finding builds on images from NASA’s Cassini spacecraft, which first confirmed the existence of Titan’s methane and ethane bodies. Understanding how these waves might erode the coastlines could offer insights into Titan’s climate and future sea evolution.

    Titan’s Unique Extraterrestrial “Waters”

    Titan, Saturn’s largest moon, is the only other planetary body in the solar system that currently hosts active rivers, lakes, and seas. These otherworldly river systems are thought to be filled with liquid methane and ethane that flows into wide lakes and seas, some as large as the Great Lakes on Earth.

    The existence of Titan’s large seas and smaller lakes was confirmed in 2007, with images taken by NASA’s Cassini spacecraft. Since then, scientists have pored over those and other images for clues to the moon’s mysterious liquid environment.

    Now, MIT geologists have studied Titan’s shorelines and shown through simulations that the moon’s large seas have likely been shaped by waves. Until now, scientists have found indirect and conflicting signs of wave activity, based on remote images of Titan’s surface.

    Saturn's Moon Titan
    The lakes of Titan. Saturn’s largest moon, hosts active rivers, lakes, and seas, likely shaped by waves according to MIT researchers who used simulations to study the erosion of Titan’s shorelines. Credit: NASA

    Waves As Erosive Forces on Titan

    The MIT team took a different approach to investigate the presence of waves on Titan, by first modeling the ways in which a lake can erode on Earth. They then applied their modeling to Titan’s seas to determine what form of erosion could have produced the shorelines in Cassini’s images. Waves, they found, were the most likely explanation.

    The researchers emphasize that their results are not definitive; to confirm that there are waves on Titan will require direct observations of wave activity on the moon’s surface.

    “We can say, based on our results, that if the coastlines of Titan’s seas have eroded, waves are the most likely culprit,” says Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at MIT. “If we could stand at the edge of one of Titan’s seas, we might see waves of liquid methane and ethane lapping on the shore and crashing on the coasts during storms. And they would be capable of eroding the material that the coast is made of.”

    Titan Lakes Shaped by Waves
    Example model landscapes starting with a shoreline with flooded river valleys (left) and eroded by waves (top right) or uniform erosion (bottom right). Credit: Courtesy of the researchers

    Perron and his colleagues, including first author Rose Palermo, a former MIT-WHOI Joint Program graduate student and a research geologist at the U.S. Geological Survey, will publish their study in a forthcoming issue of Science Advances. Their co-authors include MIT research scientist Jason Soderblom, former MIT postdoc Sam Birch, now an assistant professor at Brown University, Andrew Ashton at the Woods Hole Oceanographic Institution, and Alexander Hayes of Cornell University.

    Controversies and Insights on Titan’s Wave Activity

    The presence of waves on Titan has been a somewhat controversial topic ever since Cassini spotted bodies of liquid on the moon’s surface.

    “Some people who tried to see evidence for waves didn’t see any, and said, ‘These seas are mirror-smooth,’” Palermo says. “Others said they did see some roughness on the liquid surface but weren’t sure if waves caused it.”

    Knowing whether Titan’s seas host wave activity could give scientists information about the moon’s climate, such as the strength of the winds that could whip up such waves. Wave information could also help scientists predict how the shape of Titan’s seas might evolve over time.

    Rather than look for direct signs of wave-like features in images of Titan, Perron says the team had to “take a different tack, and see, just by looking at the shape of the shoreline, if we could tell what’s been eroding the coasts.”

    Simulation Techniques and Erosion Scenarios

    Titan’s seas are thought to have formed as rising levels of liquid flooded a landscape crisscrossed by river valleys. The researchers zeroed in on three scenarios for what could have happened next: no coastal erosion; erosion driven by waves; and “uniform erosion,” driven either by “dissolution,” in which liquid passively dissolves a coast’s material, or a mechanism in which the coast gradually sloughs off under its own weight.

    The researchers simulated how various shoreline shapes would evolve under each of the three scenarios. To simulate wave-driven erosion, they took into account a variable known as “fetch,” which describes the physical distance from one point on a shoreline to the opposite side of a lake or sea.

    “Wave erosion is driven by the height and angle of the wave,” Palermo explains. “We used fetch to approximate wave height because the bigger the fetch, the longer the distance over which wind can blow and waves can grow.”

    To test how shoreline shapes would differ between the three scenarios, the researchers started with a simulated sea with flooded river valleys around its edges. For wave-driven erosion, they calculated the fetch distance from every single point along the shoreline to every other point, and converted these distances to wave heights. Then, they ran their simulation to see how waves would erode the starting shoreline over time. They compared this to how the same shoreline would evolve under erosion driven by uniform erosion. The team repeated this comparative modeling for hundreds of different starting shoreline shapes.

    Comparing Erosion Types and Their Effects

    They found that the end shapes were very different depending on the underlying mechanism. Most notably, uniform erosion produced inflated shorelines that widened evenly all around, even in the flooded river valleys, whereas wave erosion mainly smoothed the parts of the shorelines exposed to long fetch distances, leaving the flooded valleys narrow and rough.

    “We had the same starting shorelines, and we saw that you get a really different final shape under uniform erosion versus wave erosion,” Perron says. “They all kind of look like the flying spaghetti monster because of the flooded river valleys, but the two types of erosion produce very different endpoints.”

    The team checked their results by comparing their simulations to actual lakes on Earth. They found the same difference in shape between Earth lakes known to have been eroded by waves and lakes affected by uniform erosion, such as dissolving limestone.

    Mapping and Modeling Titan’s Largest Seas

    Their modeling revealed clear, characteristic shoreline shapes, depending on the mechanism by which they evolved. The team then wondered: Where would Titan’s shorelines fit, within these characteristic shapes?

    In particular, they focused on four of Titan’s largest, most well-mapped seas: Kraken Mare, which is comparable in size to the Caspian Sea; Ligeia Mare, which is larger than Lake Superior; Punga Mare, which is longer than Lake Victoria; and Ontario Lacus, which is about 20 percent the size of its terrestrial namesake.

    The team mapped the shorelines of each Titan sea using Cassini’s radar images, and then applied their modeling to each of the sea’s shorelines to see which erosion mechanism best explained their shape. They found that all four seas fit solidly in the wave-driven erosion model, meaning that waves produced shorelines that most closely resembled Titan’s four seas.

    “We found that if the coastlines have eroded, their shapes are more consistent with erosion by waves than by uniform erosion or no erosion at all,” Perron says.

    Future Research Directions and Implications

    The researchers are working to determine how strong Titan’s winds must be in order to stir up waves that could repeatedly chip away at the coasts. They also hope to decipher, from the shape of Titan’s shorelines, from which directions the wind is predominantly blowing.

    “Titan presents this case of a completely untouched system,” Palermo says. “It could help us learn more fundamental things about how coasts erode without the influence of people, and maybe that can help us better manage our coastlines on Earth in the future.”

    Reference: “Signatures of wave erosion in Titan’s coasts” by Rose V. Palermo, Andrew D. Ashton, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes and J. Taylor Perron, 19 June 2024, Science Advances.
    DOI: 10.1126/sciadv.adn4192

    This work was supported in part by NASA, the National Science Foundation, the USGS, and the Heising-Simons Foundation.

    MIT Moons Popular Titan
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Titan’s Mysterious “Magic Islands” – Honeycombed Hydrocarbon Icebergs on Saturn’s Largest Moon

    Saturn’s Moon Titan Beckons As NASA’s Dragonfly Mission Achieves Critical Milestone

    Webb and Keck Telescopes Team for Unprecedented Look at Saturn’s Moon Titan – “Simply Extraordinary!”

    Models of Landscape Formation on Saturn’s Moon Titan Reveal an Earth-Like Alien World

    NASA’s Dragonfly Mission to Saturn’s Moon Titan Announces Big Science Goals

    Kraken Mare – a Sea of Liquid Methane on Saturn’s Largest Moon, Titan – Estimated to Be 1,000 Feet Deep

    NASA Discovers “Very Weird” Molecule in Titan’s Atmosphere

    NASA’s Surprising Discovery: Saturn’s Planet-Sized Moon Titan Drifting Away 100X Faster Than Thought

    First Global Geologic Map of Titan (Saturn’s Largest Moon) Completed

    6 Comments

    1. Chaniet on June 28, 2024 10:18 am

      Can a human toch ive plasma and live

      Reply
    2. Boba on June 28, 2024 2:10 pm

      I’m blaming it on the climate change.

      Reply
    3. Craig Michael Vandertie on June 30, 2024 7:31 am

      Man-made pollutants are responsible for the Methane and Ethane on Titan, ROFLMAO, not anymore so than Industrial and ICE vehicles here on earth are responsible for climate change, now just as in the past it is primarily due to Solar and Geothermal activity.

      Yet the Loonietics continue to bow at the alter of idiots like Greta Thunberg, and liars and hypocrites like Climate Czar John Kerry.

      Reply
    4. Keith Eric Turausky on July 1, 2024 12:25 pm

      That’s so fetch!

      Reply
    5. RoSH on July 1, 2024 1:15 pm

      So many variants so little ability to weight them.

      Reply
    6. Jessica on July 1, 2024 2:31 pm

      Lazer on planets associated with The Gathering Place interface.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.