Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Nanowire Innovation: Revolutionizing Fuel Cells With Enhanced Durability
    Technology

    Nanowire Innovation: Revolutionizing Fuel Cells With Enhanced Durability

    By Los Alamos National LaboratoryAugust 28, 2023No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Coaxial Nanowire Electrode Fuel Cell
    Vertically aligned coaxial nanowires in an electrode with protons transported in the ionomer core inside the nanowire. Electrons transported in the platinum nanofilm shell combine with oxygen to complete the fuel cell cathode reaction. Credit LANL

    The Los Alamos National Laboratory introduced a corrosion-resistant fuel cell design featuring a coaxial nanowire electrode. This innovative approach holds promise for heavy-duty trucking, showing impressive durability in stress tests.

    A groundbreaking fuel cell design offers potential advancements for heavy-duty trucking and various other clean fuel cell applications. A promising, more durable fuel cell design could help transform heavy-duty trucking and other clean fuel cell applications. Consisting of nanowires that are less susceptible to corrosion than other designs, the innovative electrode — the heart of a polymer electrolyte-membrane fuel cell — could usher in a new era for fuel cells, which use hydrogen as emission-free power for vehicles.

    “In real-world terms, this means that we can have a more durable fuel cell that will provide high fuel economy over a longer lifetime,” said Jacob Spendelow, a scientist with the Los Alamos National Laboratory team that described its results in the journal Advanced Materials. “This work demonstrates that we can get rid of conventional carbon-based catalyst supports, eliminating the degradation problems associated with carbon corrosion, while still achieving high fuel cell performance.”

    Application in Heavy-Duty Trucking

    The enhanced durability makes this fuel cell a promising candidate for use in heavy-duty trucking applications, where fuel cell longevity exceeding 25,000 hours is essential.

    The coaxial nanowire electrode (CANE) consists of an array of vertically aligned nanowires in which each nanowire comprises a catalytically active platinum film surrounding an ion-conducting polymer core. By avoiding carbon-based catalyst supports, the CANE eliminates common degradation mechanisms associated with carbon corrosion.

    Performance and Durability Tests

    To evaluate the new fuel cell’s durability, the team at Los Alamos National Laboratory conducted accelerated stress tests. Remarkably, the CANE lost a mere 2% of its performance after undergoing 5,000 stress test cycles targeting the support materials. In contrast, a traditional carbon-based electrode experienced a staggering 87% decline in performance.

    The coaxial nanowire approach is one of several novel fuel cell designs generated at Los Alamos National Laboratory; a grooved electrode design was recently described in Nature Energy.

    Reference: “Coaxial Nanowire Electrodes Enable Exceptional Fuel Cell Durability” by Gaoqiang Yang, Siddharth Komini Babu, Wipula P. R. Liyanage, Ulises Martinez, Dmitri Routkevitch, Rangachary Mukundan, Rodney L. Borup, David A. Cullen and Jacob S. Spendelow, 19 June 2023, Advanced Materials.
    DOI: 10.1002/adma.202301264

    Funding: This work was supported by the U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office (DOE-HFTO) through the Million Mile Fuel Cell Truck consortium, as well as the Laboratory Directed Research and Development program at Los Alamos National Laboratory. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Electron microscopy was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at Oak Ridge National Laboratory.

    DOE Energy Los Alamos National Laboratory Nanotechnology Nanowires
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Atomic Armor for Next-Generation, Electron-Beam Accelerators

    Unplanned Discovery: A Super Material for Batteries and Other Energy Conversion Devices

    Decades of Research Brings Quantum Dots to Brink of Widespread Use in a Range of Technology Applications

    Qubit Spin Ice: Emergent Magnetic Monopoles Isolated Using Quantum-Annealing Computer

    Harvesting Light Like Nature Does: Synthesizing a New Class of Bio-Inspired, Light-Capturing Nanomaterials

    New Perovskite Fabrication Method for Solar Cells Paves Way to Low-Cost, Large-Scale Production

    Breakthrough Quantum-Dot Transistors Open the Door to a Host of Innovative Electronics

    Battery Breakthrough to Give Flight to Electric Aircraft and Boost Long-Range Electric Cars

    Researchers Study the Use of Photosystem-I as Photovoltaic Panels

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.