Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Previously Undetected Hybrid Neutron-Star Merger Event Revealed by Unusual Gamma-Ray Burst
    Space

    Previously Undetected Hybrid Neutron-Star Merger Event Revealed by Unusual Gamma-Ray Burst

    By Los Alamos National LaboratoryDecember 7, 2022No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Debris Blasts Away After Neutron Stars Collide
    As neutron stars collide, some of the debris blasts away in particle jets moving at nearly the speed of light, producing a brief burst of gamma rays. Credit: NASA’s Goddard Space Flight Center/CI Lab

    Modeling calls into question supernova origin, forcing a reconsideration of the prevailing view of gamma-ray-burst events.

    The standard view of gamma-ray bursts as a signature for different types of dying stars might need a rewrite. Recent astronomical observations, supported by theoretical modeling, reveal a new observational fingerprint of neutron-star mergers, which may shed light on the production of heavy elements throughout the universe.

    “Astronomers have long believed that gamma-ray bursts fell into two categories: long-duration bursts from imploding stars and short-duration bursts from merging compact stellar objects,” said Chris Fryer, an astrophysicist and Laboratory Fellow at the U. S. Department of Energy’s Los Alamos National Laboratory. Fryer is coauthor and leader of the modeling team on a paper about the phenomenon published today (December 7) in the journal Nature. “But in a recently observed event, we’ve found a kilonova along with a long-duration gamma-ray burst, and that has thrown a wrench into this simple picture.”

    Hypernovae/supernovae are the visible-light, transient objects produced in these explosions from imploding objects, while kilonovae are visible-light transients produced by merging compact objects where at least one is a neutron star. Gamma-ray bursts can accompany both types of transients. Supernovae are produced when a massive star explodes; only a small subset of supernovae arise from the explosion mechanism that produces gamma-ray bursts.

    Neutron Star Merger Radioactive Ejecta
    When neutron stars merge, they can produce radioactive ejecta that powers a kilonova signal, as this conceptual image shows. A recently observed gamma-ray burst looked like the emissions from a supernova but turned out to signal a previously undetected hybrid event involving a kilonova. Credit: Los Alamos National Laboratory

    The long and short of gamma-ray bursts

    Long-duration GRBs (longer than two seconds) are typically associated with supernovae, while short-duration GRBs (less than two seconds) are commonly associated with neutron-star mergers. These various forms of observable electromagnetic emission are all known as transients. Neutron-star mergers form some of the heaviest elements—those beyond iron on the periodic table.

    On December 11, 2021, several observatories and satellites recorded a very bright, 50-second gamma-ray burst and optical, infrared, and x-ray emissions associated with the burst. This long burst was relatively nearby—about a billion light-years away in a different galaxy than the Milky Way—but its emission characteristics did not fit the profile of long-burst events. Instead, the evidence pointed to a compact-object merger in a theorized but previously unobserved hybrid event that produces a kilonova but emits a long-duration gamma-ray burst.

    “Our modeling team at Los Alamos compared the observation to a suite of supernova and kilonova simulations, and we were unable to convincingly match the signal to a supernova model, whereas several kilonova models give a good match of the optical and infrared data points,” said Ryan Wollaeger, a coauthor of the paper and member of the Los Alamos modeling team. “There is still more theoretical modeling to do to fully understand this transient, however.”

    Challenging the standard understanding

    “This detection breaks our standard idea of gamma-ray bursts,” said Eve Chase, also a coauthor of the paper, a postdoc at Los Alamos and a member of the Los Alamos team. “We can no longer assume that all short-duration bursts come from neutron-star mergers, while long-duration bursts come from supernovae. We now realize that gamma-ray bursts are much harder to classify. This detection pushes our understanding of gamma-ray bursts to the limits.”

    The observation, dubbed GRB211211A, provides the first direct evidence of a hybrid event. Gravitational-wave observations would confirm the nature of GRB211211A, but unfortunately sensitive gravitational wave detectors like LIGO (Laser Interferometer Gravitational-Wave Observatory) were not operating at the time of this detection.

    Although the long-duration burst challenges the accepted understanding of compact-binary-merger models, Fryer said, a merger nonetheless explains all the other observed features of GRB211211A.

    Fryer and his Ph.D. advisor Stan Woosley coined and developed in 1999 the widely accepted black-hole accretion-disk paradigm as the simplest explanation for the two classes of gamma-ray-burst events. Under this paradigm, merging compact objects, with their halos of gravitationally attracted material (accretion disks), would produce short-duration gamma-ray bursts. The collapse of massive stars into supernovae, with longer-lived accretion disks, would produce longer bursts. A growing set of observations have supported these two classes and the types of stellar objects associated with them, Fryer said.

    Reference: “A nearby long gamma-ray burst from a merger of compact objects” by E. Troja, C. L. Fryer, B. O’Connor, G. Ryan, S. Dichiara, A. Kumar, N. Ito, R. Gupta, R. Wollaeger, J. P. Norris, N. Kawai, N. Butler, A. Aryan, K. Misra, R. Hosokawa, K. L. Murata, M. Niwano, S. B. Pandey, A. Kutyrev, H. J. van Eerten, E. A. Chase, Y.-D. Hu, M. D. Caballero-Garcia, A. J. Castro-Tira, 7 December 2022, Nature.
    DOI: 10.1038/s41586-022-05327-3

    An international team comprising researchers at universities, research institutes, NASA, and Los Alamos collaborated on the work. Fryer led the modeling team, which included Wollaeger and Chase. The Los Alamos team has developed supernova and kilonova modeling codes that run on supercomputers. Applying these codes to the observational data was key to interpreting the observations of GRB211211A.

    Funding: Laboratory Directed Research and Development at Los Alamos National Laboratory.

    Astronomy Astrophysics DOE Gamma Ray Los Alamos National Laboratory Supernova
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Cosmic Flash: Earth Struck by Historic Gamma-Ray Burst From Exploding Star

    Astronomers Discover Never-Before-Seen Way To Destroy a Star

    A New Way To Annihilate a Star: Stellar Demolition Derby Near Black Hole in Ancient Galaxy

    Strange Long-Lasting Pulse of High-Energy Radiation Swept Over Earth

    Science Made Simple: What Are Supernovae?

    Probing Mysterious “Afterglow” X-Ray Remnants From Extreme Cosmic Bursts of Light

    Astronomers Discover Surprising Cause of a “Fizzled” Gamma-Ray Burst

    Boundary Between Our Solar System and Interstellar Space Mapped for the First Time

    Twin Supernovae Open Up New Possibilities for Precision Cosmology

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.