Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Quantum Control Unlocked: Creating Resistance-Free Electron Channels
    Physics

    Quantum Control Unlocked: Creating Resistance-Free Electron Channels

    By Theresa Duque, Lawrence Berkeley National LaboratoryApril 12, 20241 Comment5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Quantum Physics Electron Material Energy Art Concept
    New research demonstrates control over quantum states that could revolutionize energy efficiency in electronics and advance quantum computing. Credit: SciTechDaily.com

    For the first time, scientists electrically manipulate a ‘chiral interface state’ in a 2D material, with promise for energy-efficient microelectronics and quantum computing.

    • Scientists have taken the first atomic-resolution images of an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
    • The work enables the visualization and control of electron flow in a unique class of quantum insulators.
    • The findings may help researchers build tunable networks of electron channels with promise for efficient quantum computing and low-power magnetic memory devices in the future.

    Breakthrough in Quantum Computing and Electronics

    An international research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state – an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

    Unveiling Chiral Interface States

    The chiral interface state is a conducting channel that allows electrons to travel in only one direction, preventing them from being scattered backward and causing energy-wasting electrical resistance. Researchers are working to better understand the properties of chiral interface states in real materials but visualizing their spatial characteristics has proved to be exceptionally difficult.

    But now, for the first time, atomic-resolution images captured by a research team at Berkeley Lab and UC Berkeley have directly visualized a chiral interface state. The researchers also demonstrated on-demand creation of these resistance-free conducting channels in a 2D insulator.

    Chiral Interface State Close Up
    Scanning tunneling microscopy image of a chiral interface state wavefunction (bright stripe) in a quantum anomalous Hall insulator made from twisted monolayer-bilayer graphene. Credit: Canxun Zhang/Berkeley Lab

    Advancing Quantum Material Applications

    Their work, which was reported in the journal Nature Physics, is part of Berkeley Lab’s broader push to advance quantum computing and other quantum information system applications, including the design and synthesis of quantum materials to address pressing technological needs.

    “Our work shows for the first time what these 1D states look like at the atomic scale, including how we can alter them – and even create them.”

    – Canxun Zhang, former graduate student researcher, Materials Sciences Division

    “Previous experiments have demonstrated that chiral interface states exist, but no one has ever visualized them with such high resolution. Our work shows for the first time what these 1D states look like at the atomic scale, including how we can alter them – and even create them,” said first author Canxun Zhang, a former graduate student researcher in Berkeley Lab’s Materials Sciences Division and the Department of Physics at UC Berkeley. He is now a postdoctoral researcher at UC Santa Barbara.

    Innovative Techniques and Future Applications

    Chiral interface states can occur in certain types of 2D materials known as quantum anomalous Hall (QAH) insulators that are insulators in bulk but conduct electrons without resistance at one-dimensional “edges” – the physical boundaries of the material and interfaces with other materials.

    To prepare chiral interface states, the team worked at Berkeley Lab’s Molecular Foundry to fabricate a device called twisted monolayer-bilayer graphene, which is a stack of two atomically thin layers of graphene rotated precisely relative to one another, creating a moiré superlattice that exhibits the QAH effect.

    Chiral Interface State
    Scanning tunneling microscopy images show a chiral interface state wavefunction (bright stripe) in a QAH insulator made from twisted monolayer-bilayer graphene in a 2D device. The interface can be moved across the sample by modulating the voltage on a gate electrode placed underneath the graphene layers. Credit: Canxun Zhang/Berkeley Lab

    In subsequent experiments at the UC Berkeley Department of Physics, the researchers used a scanning tunneling microscope (STM) to detect different electronic states in the sample, allowing them to visualize the wavefunction of the chiral interface state. Other experiments showed that the chiral interface state can be moved across the sample by modulating the voltage on a gate electrode placed underneath the graphene layers. In a final demonstration of control, the researchers showed that a voltage pulse from the tip of an STM probe can “write” a chiral interface state into the sample, erase it, and even rewrite a new one where electrons flow in the opposite direction.

    Potential Impact and Ongoing Research

    The findings may help researchers build tunable networks of electron channels with promise for energy-efficient microelectronics and low-power magnetic memory devices in the future, and for quantum computation making use of the exotic electron behaviors in QAH insulators.

    The researchers intend to use their technique to study more exotic physics in related materials, such as anyons, a new type of quasiparticle that could enable a route to quantum computation.

    “Our results provide information that wasn’t possible before. There is still a long way to go, but this is a good first step,” Zhang said.

    Reference: “Manipulation of chiral interface states in a moiré quantum anomalous Hall insulator” by Canxun Zhang, Tiancong Zhu, Salman Kahn, Tomohiro Soejima, Kenji Watanabe, Takashi Taniguchi, Alex Zettl, Feng Wang, Michael P. Zaletel and Michael F. Crommie, 13 March 2024, Nature Physics.
    DOI: 10.1038/s41567-024-02444-w

    The work was led by Michael Crommie, a senior faculty scientist in Berkeley Lab’s Materials Sciences Division and physics professor at UC Berkeley.

    Tiancong Zhu, a former postdoctoral researcher in the Crommie group at Berkeley Lab and UC Berkeley, contributed as co-corresponding author and is now a physics professor at Purdue University.

    The Molecular Foundry is a DOE Office of Science user facility at Berkeley Lab.

    This work was supported by the DOE Office of Science. Additional funding was provided by the National Science Foundation.

    2D Materials DOE Electronics Lawrence Berkeley National Laboratory Materials Science Quantum Computing Quantum Materials
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Unlocking the Power of Quantum Materials With Breakthrough Technology

    Research Team Unlocks Secret Path to a Bright Quantum Future

    This Exotic Particle Had an Out-of-Body Experience – These Surprised Scientists Took a Picture of It

    Main Attraction: Scientists Create World’s Thinnest Magnet – Just One Atom Thick!

    Actor in a Supporting Role: Substrate Effects on Atomically Thin Semiconductors

    Quantum Leap for Quantum Computing: Ion Beams Create Chains of Closely Coupled Qubits

    Mechanism Discovered for Making Superconductors More Resistant to Magnetic Fields

    Know When to Unfold ’Em: Applying High Energy Physics Methods to Quantum Computing

    Making Quantum ‘Waves’ in Ultrathin Materials – Plasmons Could Power a New Class of Technologies

    1 Comment

    1. Ralph Johnson on April 12, 2024 9:36 am

      Assuming the voltage as direct current, what would happen at a alternating current.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.