Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Scientists Identify Hidden Phase Transition Between Liquid and Solid
    Physics

    Scientists Identify Hidden Phase Transition Between Liquid and Solid

    By Rachel Berkowitz, Lawrence Berkeley National LaboratoryAugust 23, 20231 Comment4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    2D Material Glassy Phase
    (Left) Above an onset temperature, a 2D material exhibits normal liquid behavior with all particles similarly mobile (yellow). (Right) Below that temperature, it becomes supercooled, with the onset of rigidity leading to just some mobile particles (yellow) amongst solid-like ‘frozen’ regions (blue). Credit: Kranthi Mandadapu

    Improved understanding of glassy dynamics could help scientists explain why a liquid behaves like a solid, and develop useful new materials.

    Researchers have identified a hidden phase transition in amorphous materials like plastic and glass. Through combining theory, simulations, and previous studies, they observed that the molecules in these materials become extremely viscous at a certain “onset temperature,” transitioning from a liquid-like to a solid-like state. This discovery could pave the way for the development of new amorphous materials for various applications, including medical devices and drug delivery.

    Anything made out of plastic or glass is known as an amorphous material. Unlike many materials that freeze into crystalline solids, the atoms and molecules in amorphous materials never stack together to form crystals when cooled. In fact, although we commonly think of plastic and glass as “solids,” they instead remain in a state that is more accurately described as a supercooled liquid that flows extremely slowly. And although these “glassy dynamic” materials are ubiquitous in our daily lives, how they become rigid at the microscopic scale has long eluded scientists.

    Now, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered molecular behavior in supercooled liquids that represents a hidden phase transition between a liquid and a solid.

    Their improved understanding applies to ordinary materials like plastics and glass, and could help scientists develop new amorphous materials for use in medical devices, drug delivery, and additive manufacturing.

    Scientific Revelations on Glassy Dynamics

    Specifically, combining theory, computer simulations, and previous experiments, the scientists explained why the molecules in these materials, when cooled, remain disordered like a liquid until taking a sharp turn toward a solid-like state at a certain temperature called the onset temperature – effectively becoming so viscous that they barely move. This onset of rigidity – a previously unknown phase transition – is what separates supercooled from normal liquids.

    Kranthi Mandadapu
    Kranthi Mandadapu. Credit: Kranthi Mandadapu

    “Our theory predicts the onset temperature measured in model systems and explains why the behavior of supercooled liquids around that temperature is reminiscent of solids even though their structure is the same as that of the liquid,” said Kranthi Mandadapu, a staff scientist in Berkeley Lab’s Chemical Sciences Division and professor of chemical engineering at the University of California, Berkeley, who led the work which was published in PNAS.

    Any supercooled liquid continuously jumps between multiple configurations of molecules, resulting in localized particle movements known as excitations. In their proposed theory, Mandadapu, postdoctoral researcher Dimitrios Fraggedakis, and graduate student Muhammad Hasyim treated the excitations in a 2D supercooled liquid as though they were defects in a crystalline solid. As the supercooled liquid’s temperature increased to the onset temperature, they propose that every instance of a bound pair of defects broke apart into an unbounded pair. At precisely this temperature, the unbinding of defects is what made the system lose its rigidity and begin to behave like a normal liquid.

    “The onset temperature for glassy dynamics is like a melting temperature that ‘melts’ a supercooled liquid into a liquid. This should be relevant for all supercooled liquids or glassy systems,” said Mandadapu.

    “The whole quest is to understand microscopically what separates the supercooled liquid and a high temperature liquid.”

    – Kranthi Mandadapu

    Moving Forward with the Research

    The theory and simulations captured other key properties of glassy dynamics, including the observation that, over short periods of time, a few particles moved while the rest of the liquid remained frozen.

    “The whole quest is to understand microscopically what separates the supercooled liquid and a high-temperature liquid,” said Mandadapu.

    Mandadapu and his colleagues believe they will be able to extend their model to 3D systems. They also intend to expand it to explain just how localized motions lead to further nearby excitations resulting in the relaxation of the entire liquid. Together, these components could provide a consistent microscopic picture of how glassy dynamics emerge in a way that aligns with state-of-the-art observations.

    “It’s fascinating from a basic science point of view to examine why these supercooled liquids exhibit remarkably different dynamics than the regular liquids that we know,” said Mandadapu.

    Reference: “Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids” by Dimitrios Fraggedakis, Muhammad R. Hasyim and Kranthi K. Mandadapu, 31 March 2023, Proceedings of the National Academy of Sciences.
    DOI: 10.1073/pnas.2209144120

    This research was funded by the Department of Energy’s Office of Science.

    DOE Lawrence Berkeley National Laboratory Phase Transition Popular
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Unlocking the Power of Quantum Materials With Breakthrough Technology

    Success! First Results From World’s Most Sensitive Dark Matter Detector

    Physicists Are Closing In on the Next Breakthrough in Particle Physics – And the Search for Our Own Origins

    Surprising New Clues Uncovered to Exotic Superconductors’ Superpowers

    This Exotic Particle Had an Out-of-Body Experience – These Surprised Scientists Took a Picture of It

    Physicists May Have Found Dark Matter: X-rays Surrounding “Magnificent 7” May Be Traces of Theorized Particle

    CERN to Announce the Latest Results from ATLAS and CMS

    MAJORANA, the Underground Experiment that Could Rewrite the Standard Model

    Researchers Show Imaging of Non-Reflection Domain Wall Structures

    1 Comment

    1. Bao-hua ZHANG on August 23, 2023 6:29 am

      Please guide your research with a scientific worldview. Topological vortices are point defects in two-dimensional spacetime. Point defects do not only impact the thermodynamic properties, but are also central to kinetic processes. To study 2D matter, one must understand the interactions of topological vortices.
      If you are really interested in science, you can browse
      https://zhuanlan.zhihu.com/p/390071860.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.