Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Unlocking the Mysteries of Protein Folding With Advanced Microscopy
    Physics

    Unlocking the Mysteries of Protein Folding With Advanced Microscopy

    By Kenna Hughes-Castleberry, JILAMarch 27, 2024No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Probing Proton Pumping Experimental Setup
    Diagram of the experimental setup (not to scale): Photoactivation of a single molecule of bR. Credit
    Steven Burrows/Perkins Group

    Researchers have advanced the understanding of membrane protein dynamics by studying bacteriorhodopsin (bR) with innovative methods combining atomic force microscopy and light triggers.

    When it comes to drug development, membrane proteins play a crucial role, with about 50% of drugs targeting these molecules. Understanding the function of these membrane proteins, which connect to the membranes of cells, is important for designing the next line of powerful drugs. To do this, scientists study model proteins, such as bacteriorhodopsin (bR), which, when triggered by light, pump protons across the membrane of cells.

    While bR has been studied for half a century, physicists have recently developed techniques to observe its folding mechanisms and energetics in the native environment of the cell’s lipid bilayer membrane. In a new study published by Proceedings of the National Academy of Sciences (PNAS), JILA and NIST Fellow Thomas Perkins and his team advanced these methods by combining atomic force microscopy (AFM), a conventional nanoscience measurement tool, with precisely timed light triggers to study the functionality of the protein function in real-time.

    “The energetics of membrane proteins has been challenging to study and therefore not well understood,” explained Perkins. “Using AFM and other methods, we can create ways to look into this further.” Armed with a better understanding of the energetics of these proteins, chemists can design drugs that are more potent towards specific symptoms and illnesses caused by protein misfunction

    Measuring Millisecond Protein Dynamics

    While bR is a microscopic protein, it can be seen by the naked eye, and even in satellite images, when archaeon microorganisms bloom, they leave vast amounts of it as residue in salt-water ponds. “The ponds become filled with what’s called Halobacterium salinarum, the parent organism of bacteriorhodopsin,” Perkins elaborated. “These ponds are used to harvest salt, and because they’re warm and salty, the bacteria love to grow there.”

    At the microscopic level, bR works with other membrane proteins to produce energy for the cell by creating a proton gradient on one side of the cell membrane, which ushers the proton through to the other side of the membrane. bR does this by folding and unfolding its helices into specific shapes to control how many protons pass through the membrane. During this process, the proton migration produces chemical energy in the form of adenosine-tri-phosphate (ATP).

    For Perkins and his co-author David Jacobson (a former JILA postdoctoral researcher and now an assistant professor at Clemson University), bR presented an opportunity to design a new experimental method for looking at real-time functional energetics. To study proteins like bR, Jacobson, and Perkins utilize AFM, which acts like a tiny finger to pull on the protein gently, which helps the AFM to feel the protein’s surface, mapping out its structure and giving a better understanding of how the protein folds.

    Because bR’s folding processes are triggered by light, Perkins and Jacobson added a lighting element to the AFM procedure. “We had this clever idea to glue super thin green LEDs—which trigger the bacteriorhodopsin—to a metal puck, which we can attach to the AFM,” Perkins elaborated. “These green LEDs are also cheap, like $1.00 apiece or $1.50 apiece. Compared to our AFM cantilever, which costs about $80 apiece, throwing away a $1.50 LED is hardly something we worry about.”

    With this inexpensive add-on to their AFM, Perkins and Jacobson could induce the bR to fold and unfold with millisecond precision. After collecting their data, the researchers found that the protein correctly folded 60% of the time, allowing the protons to pass through the membrane.
    To verify the energetics and real-time function of the protein folding, the scientists mutated the bR protein to remain always in the “open” or unfolded state. Using their new experimental setup, they could reproduce findings similar to what they observed before in the “open” phase of the bR photocycle.

    “In biology, you might see something, but you need to ask, am I seeing what I think I’m seeing?” Perkins said. “So, by making a mutation and seeing the effect that we expected, we have increased confidence that we’re really studying the process we think we are studying.”

    The Mystery of the Misfolded Protein

    While Perkins and Jacobson observed proper folding 60% of the time, the other 40% of cases surprised them, as the protein misfolded but could still pump a proton through the membrane. “The misfolding is actually stabilizing,” added Perkins. “And that was really surprising.” In many cases, protein misfolding does not result in stabilization.

    Due to the energetic stabilization, Perkins and Jacobson theorized that the bR’s structural helices weren’t separating properly to provide a completely open tunnel for the proton, though it still wiggled through, a process difficult to detect with AFM imaging.

    Trying to understand the underlying mechanisms for the misfolding better, Perkins and Jacobson lowered the force on the AFM pulling assay to zero to see if this would coax the protein to fold correctly. However, the results remained the same: 40% of cases resulted in misfolding.
    These results, with the same amount of misfolding, puzzled the researchers. While Perkins and Jacobson couldn’t identify the cause of these misfolding cases, they hope to investigate further. Now, they are interested in seeing what the rest of the biophysics community makes of these results.

    “There could be more subtle effects, or maybe some new science there,” Perkins added. “It could be that there’s a pathway that perhaps people haven’t been able to see before.”

    Reference: “Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy” by David R. Jacobson and Thomas T. Perkins, 7 February 2024, Proceedings of the National Academy of Sciences.
    DOI: 10.1073/pnas.2313818121

    Biophysics JILA Protein
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Quantum Light’s “Goldilocks” Zone: Perfecting Elliptical Polarization

    Mastering Electron Spin: High-Harmonic Probes Unlock Magnetic Mysteries

    The Future of Biology: Decoding Cell and Tissue Mechanics in 3D With Active Matter Theory

    Microscopic Masterminds: The Structural Genius of Bacteria

    From Atoms to Organisms: “Assembly Theory” Unifies Physics and Biology To Explain Evolution and Complexity

    Soccer Balls, Footballs & Quantum Mechanics: A New “Spin” on Ergodicity Breaking

    Unlocking the Secrets of the Cell: Scientists “Dive” Into the Dark Hole of the Nuclear Pore Complex

    Electron Asymmetry and the Mystery of Matter’s Existence: A Record-Breaking Study

    Theorists Show How Energy Landscapes Dominate Both Evolution and Folding of Proteins

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.