Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»CLASP Provides First-Ever Polarization Measurements of UV Light from Sun’s Outer Atmosphere
    Space

    CLASP Provides First-Ever Polarization Measurements of UV Light from Sun’s Outer Atmosphere

    By Molly Porter, NASA's Marshall Space Flight CenterMay 24, 2017No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    CLASP Sounding Rocket Opens New Window in Solar Physics
    Observations from CLASP mission provided the first ultraviolet polarization measurements of the sun’s outer atmosphere. NASA and a global science team have used observations from CLASP sounding rocket mission to provide the first ultraviolet polarization measurements of the sun’s outer atmosphere. Credit: NAOJ, JAXA, NASA/MSFC; background solar image: NASA/SDO)

    Using data from the the high-precision science instrument CLASP (Chromospheric Lyman-Alpha Spectro-Polarimeter), scientists reveal the first-ever polarization measurements of ultraviolet light emitted from the sun’s outer atmosphere. Previous polarization measurements were restricted to visible light that is emitted from the sun’s surface.

    By looking at the sun with this new technique, heliophysicists — who study how our dynamic sun drives change in the very physics of space around Earth and other planets — now can answer fundamental questions about the sun’s chromosphere, an important layer of the outer atmosphere of our turbulent star.

    “We can’t directly image everything that’s going on in the solar atmosphere, but studying the polarization of ultraviolet light reveals the physics of the magnetic fields in the upper chromosphere and the transition region to better understand activity in this enigmatic region,” said Amy Winebarger, CLASP’s principal investigator at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

    Her colleague David McKenzie, a fellow NASA heliophysicist, concurred. “Understanding the role of the magnetic field is vital to predicting powerful solar activity and protecting space and Earth technology from potential damage,” he said.

    Papers describing the findings appears in the April 2017 issue of The Astrophysical Journal Letters and the May 2017 issue of The Astrophysical Journal.

    The CLASP instrument measures ultraviolet light from the sun which cannot penetrate Earth’s atmosphere. To make this measurement, this instrument was flown aboard a sounding rocket on a five-minute flight above Earth’s atmosphere on September 3, 2015. Thanks to CLASP’s success, a second international team — with McKenzie as principal investigator — is now planning to launch CLASP 2 via sounding rocket in 2019. This second flight of CLASP will provide further insights into the processes by which energy emerges through the sun’s corona and pushes outward as the solar wind.

    Winebarger called the first mission’s initial findings “unprecedented.” They helped lead to the CLASP team’s May award of the National Astronomical Observatory of Japan Director General Prize, citing the mission’s “significant scientific results” and overall “great success.”

    Goals of the mission

    The mission measured ultraviolet light — specifically, the Lyman-alpha emission line — produced by hydrogen atoms present in the chromosphere, a layer of the sun’s atmosphere. Winebarger explained that the polarization of this light, or its restriction to one direction, can be correlated to the intensity and direction of the magnetic field. “The CLASP observations have unlocked a new method of determining the magnetic field strength in this region — by measuring the polarization of this specific spectral line which is extremely sensitive to magnetic fields in the chromosphere,” she said.

    Understanding the properties of the sun’s magnetic field is of crucial value to researchers. McKenzie, who is the principal investigator for CLASP 2 noted that the magnetic field plays a vital role in dictating the structure of the sun’s atmosphere, and acts as a conduit for mass and energy to flow into the solar corona and solar wind. Solar material can also reach Earth from powerful eruptions on the sun, such as solar flares or coronal mass ejections, which at their worst can disrupt satellites and interfere with radio communications. As a result, knowledge of how the sun releases these bursts of energy is critical to our understanding of the sun’s impact on these important technological systems.

    Launched via Black Brant IX suborbital sounding rocket from White Sands Missile Range in New Mexico, CLASP had a mere five-minute window in which to study the sun, 93 million miles distant, and return imagery with minimal noise — or the disruption of image pixels — and a level of precision of less than 0.1 percent. “CLASP definitely made good on the promise of its mission,” McKenzie said. It even revealed a series of unexpected supersonic events, possibly some type of previously unseen magnetohydrodynamic wave, occurring all over the sun’s surface.

    CLASP 2 expands on the research of the first mission, this time studying other emission lines, namely Magnesium II h and k lines. Routinely observed for chromospheric investigations, these lines operate on a longer wavelength than do the Lyman-alpha lines, McKenzie explained. “Studying those additional wavelengths will add a three-dimensional perspective to the study, revealing not just the component of the magnetic field in the plane of the sky, but also the part directed toward or away from us — the complete 3-D magnetic vector,” he said. “We’re picking up a whole new dimension with the new mission.”

    More about CLASP and CLASP 2

    The CLASP project was based on pioneering theoretical research proposed in 2007 by Javier Trujillo-Bueno of the Instituto de Astrofísica de Canarias in Santa Cruz de Tenerife, Spain. The optical instrument was designed and built by a team from the National Astronomical Observatory of Japan and the Japan Aerospace Exploration Agency, and included precision optical components provided by France’s Institut d’Astrophysique Spatiale. The launch was supported through NASA’s Sounding Rocket Program at NASA’s Wallops Flight Facility on Wallops Island, Virginia, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding-rocket program.

    The CLASP 2 team includes NASA, the National Astronomical Observatory of Japan, the Japan Aerospace Exploration Agency, Instituto de Astrofísica de Canarias, Institut d’Astrophysique Spatiale, Istituto Ricerche Solari Locarno, the Astronomical Institute of the Czech Academy of Sciences, Lockheed Martin Solar and Astrophysics Laboratory, the High Altitude Observatory, the University of Oslo and Stockholm University.

    The NASA Marshall team are no strangers to solar work. They developed two previous sounding-rocket solar experiments: the High Resolution Coronal Imager, or Hi-C, which launched in 2012, and the Solar Ultraviolet Magnetograph Instrument, or SUMI, which completed its second research flight in 2012. They also continue to contribute to Hinode, the joint Japanese-American mission launched in 2006 to study the sun.

    Reference:

    • “Discovery of Scattering Polarization in the Hydrogen Lyman-α Line of the Solar Disk Radiation” by R. Kano, J. Trujillo Bueno, A. Winebarger, F. Auchère, N. Narukage, R. Ishikawa, K. Kobayashi, T. Bando, Y. Katsukawa, M. Kubo, S. Ishikawa, G. Giono, H. Hara, Y. Suematsu, T. Shimizu, T. Sakao, S. Tsuneta, K. Ichimoto, M. Goto, L. Belluzzi, J. Štěpán, A. Asensio Ramos, R. Manso Sainz, P. Champey, J. Cirtain, B. De Pontieu, R. Casini and M. Carlsson, 10 April 2017, The Astrophysical Journal Letters.
      DOI: 10.3847/2041-8213/aa697f
    • “Indication of the Hanle Effect by Comparing the Scattering Polarization Observed by CLASP in the Lyα and Si iii 120.65 nm Lines” by R. Ishikawa, J. Trujillo Bueno, H. Uitenbroek, M. Kubo, S. Tsuneta, M. Goto, R. Kano, N. Narukage, T. Bando, Y. Katsukawa, S. Ishikawa, G. Giono, Y. Suematsu, H. Hara, T. Shimizu, T. Sakao, A. Winebarger, K. Kobayashi, J. Cirtain, P. Champey, F. Auchère, J. Štěpán, L. Belluzzi, A. Asensio Ramos, R. Manso Sainz, B. De Pontieu, K. Ichimoto, M. Carlsson and R. Casini, 19 May 2017, The Astrophysical Journal.
      DOI: 10.3847/1538-4357/aa6ca9

    Astronomy Chromosphere CLASP Heliophysics Sun
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    NASA Mourns Passing of Visionary Heliophysicist Eugene Parker – Namesake of Parker Solar Probe

    UVSC Pathfinding Experiment To Study Origins of Solar Energetic Particles – Sun’s Most Dangerous Form of Radiation

    SOHO Reveals Evidence of Seismic G-Mode Waves in Our Sun

    Solution to the Coronal Heating Mystery Presented at 2015 TESS Meeting

    NASA Video Reveals the Difference Between Solar Flares and CMEs

    Sunrise Observatory Provides the First High-Resolution Images of the Chromosphere

    NASA Spacecraft Observe Magnetic Reconnection in Action

    NASA’s NuSTAR is One Step Closer to Launching

    Strong Geomagnetic Storms a Possibility After Active Sunspot 1401 Erupted

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.