Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Self-Learning, Self-Evolving Smart Quantum Technologies for Secure Communication
    Physics

    Self-Learning, Self-Evolving Smart Quantum Technologies for Secure Communication

    By Louisiana State UniversityApril 5, 2021No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Technology Communications Programming AI Concept
    Researchers have introduced a smart quantum technology to correct distorted spatial modes of light at the single-photon level.

    Researchers from Louisiana State University have introduced a smart quantum technology for the spatial mode correction of single photons. In a paper featured on the cover of the March 2021 issue of Advanced Quantum Technologies, the authors exploit the self-learning and self-evolving features of artificial neural networks to correct the distorted spatial profile of single photons.

    The authors, PhD candidate Narayan Bhusal, postdoctoral researcher Chenglong You, graduate student Mingyuan Hong, undergraduate student Joshua Fabre, and Assistant Professor Omar S. Magaña‐Loaiza of LSU—together with collaborators Sanjaya Lohani, Erin M. Knutson, and Ryan T. Glasser of Tulane University and Pengcheng Zhao of Qingdao University of Science and Technology—report on the potential of artificial intelligence to correct spatial modes at the single-photon level.

    “The random phase distortion is one of the biggest challenges in using spatial modes of light in a wide variety of quantum technologies, such as quantum communication, quantum cryptography, and quantum sensing,” said Bhusal. “In this paper, we use artificial neurons to correct distorted spatial modes of light at the single-photon level. Our method is remarkably effective and time-efficient compared to conventional techniques. This is an exciting development for the future of free-space quantum technologies.”

    The newly developed technique boosts the channel capacity of optical communication protocols that rely on structured photons.

    “One important goal of the Quantum Photonics Group at LSU is to develop robust quantum technologies that work under realistic conditions,” said Magaña‐Loaiza. “This smart quantum technology demonstrates the possibility of encoding multiple bits of information in a single photon in realistic communication protocols affected by atmospheric turbulence. Our technique has enormous implications for optical communication and quantum cryptography. We are now exploring paths to implement our machine learning scheme in the Louisiana Optical Network Initiative (LONI) to make it smart, secure, and quantum.” 

    The U.S. Army Research Office is supporting Magaña‐Loaiza’s research on a project titled “Quantum Sensing, Imaging, and Metrology using Multipartite Orbital Angular Momentum.”

    “We are still in the fairly early stages of understanding the potential for machine learning techniques to play a role in quantum information science,” said Dr. Sara Gamble, program manager at the Army Research Office, an element of DEVCOM ARL. “The team’s result is an exciting step forward in developing this understanding, and it has the potential to ultimately enhance the Army’s sensing and communication capabilities on the battlefield.”

    Reference: “Spatial Mode Correction of Single Photons Using Machine Learning” by Narayan Bhusal, Sanjaya Lohani, Chenglong You, Mingyuan Hong, Joshua Fabre, Pengcheng Zhao, Erin M. Knutson, Ryan T. Glasser and Omar S. Magaña‐Loaiza, 22 January 2021, Advanced Quantum Technologies.
    DOI: 10.1002/qute.202000103

    The Louisiana Quantum Initiative is a statewide endeavor to advance the research and technology of quantum systems in the context of the second quantum revolution and develop the strategy and technological infrastructure of quantum-driven networks and devices. The vast constellation of Louisiana scientists who are part of the initiative encompasses researchers from all over the state, from both public and private institutions. The initiative is an ecosystem of research that relies on emergent and dynamic associations and efforts among institutions as well as individual members.

    The Quantum Photonics Group in the Department of Physics and Astronomy at LSU investigates novel properties of light and their potential for developing quantum technologies. The team also conducts experimental research in the fields of quantum plasmonics, quantum imaging, quantum metrology, quantum simulation, quantum communication, and quantum cryptography.

    Louisiana State University Molecular Physics Optics Photonics Quantum Information Science
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Quantum Breakthrough: How Multiphoton Effects Redefine Light Interference

    Scientists Realize Noiseless Photon-Echo Protocol – Key to Long-Distance Quantum Communication

    Complex Shapes of Photons for Fast Photonic Quantum Computations and Safe Data Transfer

    Hidden Symmetry Could Be Key to Ultra-Powerful Quantum Computers

    Quantum Physics Milestone: Controlled Transport of Stored Light

    Scientists Capture Light in a Polymeric Quasicrystal – New Possibilities for Laser and Sensor Design

    Newly Discovered Memory Effect Alters Doppler Wave Signature

    Scientists Test Einstein’s Theory of General Relativity Using the Tokyo Skytree

    Physicists Test the Response Time of Electrons

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.