Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Telecom’s Quantum Future: Unprecedented Longevity in Entanglement Storage
    Physics

    Telecom’s Quantum Future: Unprecedented Longevity in Entanglement Storage

    By Nanjing University School of PhysicsNovember 29, 20233 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Store Quantum Entanglement With a Crystal
    The group of Prof. Xiao-Song Ma at Nanjing University has demonstrated the faithful storage of quantum-entangled photons at telecom wavelengths for a record-long time of almost 2 μs. Key elements for this achievement were the combination of efficient generation of entangled photons (blue spheres) with an integrated microring resonator (bottom right) and long storage time in an ensemble of 167Er3+ ions doped in a Y2SiO5 crystal (cube) using atomic frequency combs (lower-left). Credit: Group of Prof. Xiao-Song Ma at Nanjing University

    Physicists have achieved a major breakthrough in quantum technology by significantly extending quantum storage times at telecom wavelengths. This advancement is critical for developing practical quantum networks and integrating them into existing fiber optic infrastructures.

    Quantum technologies are currently maturing at a breathtaking pace. These technologies exploit principles of quantum mechanics in suitably engineered systems, with bright prospects such as boosting computational efficiencies or communication security well beyond what is possible with devices based on today’s ‘classical’ technologies.

    As with classical devices, however, to realize their full potential, quantum devices will need to be networked. In principle, this can be done using the fiber optic networks employed for classical telecommunications. But practical implementation requires that the information encoded in quantum systems can be reliably stored at the frequencies used in telecom networks — a capability that has not yet been fully demonstrated.

    Writing in Nature Communications, the group of Prof. Xiao-Song Ma at Nanjing University reports record-long quantum storage at telecom wavelengths on a platform that can be deployed in extended networks, paving the way for practical large-scale quantum networks.

    Optical Fibers and Quantum Challenges

    The physical fabric of the Internet is woven from optical fibers. The glass fibers that make up these vast networks are famously pure. A common example is that you could see clearly through a kilometre-thick window made of such glass. Nonetheless, some losses are unavoidable, and the optical signals that travel through telecommunications networks need to be ‘refreshed’ at regular intervals once distances exceed a few hundred kilometers. For classical signals, there exist well-established and routinely used techniques based on repeated signal amplification. For quantum states of light, however, these routinely used approaches are unfortunately not suitable.

    Why is ‘quantum light’ different? A key ingredient that makes quantum technologies so powerful is quantum entanglement, a state in which two or more quanta of light (or, photons) share between them stronger correlations than is possible for classical light. In conventional optical signal regeneration, the optical signal is converted into an electrical signal, which is amplified before being converted back into light pulses. However, in such a process entangled photons would lose their all-important quantum correlations. The same problem occurs with other conventional methods.

    A solution is to use so-called quantum repeaters. In a nutshell, quantum repeaters store the fragile entangled state and transform it into another quantum state that shares entanglement with the next node down the line. In other words, instead of amplifying the signal, the nodes are ‘stitched together’, exploiting their unique quantum properties. At the heart of such quantum-repeater networks are quantum memories in which quantum states of light can be stored. Realizing these memories with a sufficiently long storage time is an outstanding challenge, especially for photons at telecom wavelengths (that is, around 1.5 µm).

    Breakthrough in Quantum Storage

    Hence the excitement as Ming-Hao Jiang, Wenyi Xue and colleagues in the group of Xiao-Song Ma now report storage and retrieval of the entangled state of two telecom photons with a storage time of close to two microseconds. This is almost 400 times longer than what had been demonstrated before in this field and therefore is a decisive step towards practical devices.

    The memories developed by Jiang, Xue et al. are based on yttrium orthosilicate (Y2SiO5) crystals doped with ions of the rare-earth element erbium. These ions have optical properties that are almost perfect for use in existing fiber networks, matching the wavelength of around 1.5 μm. The suitability of erbium ions for quantum storage has been known for some years, and the fact that they are embedded in a crystal makes them particularly attractive with a view to large-scale applications. However, practical implementations of erbium-ion-based quantum memories proved relatively inefficient so far, hindering further progress towards quantum repeaters.

    Ma’s group has now made significant advances in perfecting the techniques and has shown that even after storing the photon for 1936 nanoseconds, the entanglement of the photon pair is preserved. This means that the quantum state can be manipulated during this time, as is required in a quantum repeater. In addition, the researchers combined their quantum memory with a novel source of entangled photons on an integrated chip.

    This demonstrated ability to both generate high-quality entangled photons at telecom frequencies and store the entangled state, all on a solid-state platform suitable for low-cost mass production, is exciting as it establishes a promising building block that might be combined with existing large-scale fiber networks — thereby enabling a future quantum internet.

    Reference: “Quantum storage of entangled photons at telecom wavelengths in a crystal” by Ming-Hao Jiang, Wenyi Xue, Qian He, Yu-Yang An, Xiaodong Zheng, Wen-Jie Xu, Yu-Bo Xie, Yanqing Lu, Shining Zhu and Xiao-Song Ma, 1 November 2023, Nature Communications.
    DOI: 10.1038/s41467-023-42741-1

    Fiber Optics Nanjing University Quantum Computing Quantum Entanglement Quantum Physics
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Solving Quantum Mysteries: Physicists Confirm Entropy Rule for Entanglement

    Challenging Traditional Theories – Physicists Develop New Method To Quantify Quantum Entanglement

    Fish-Eye Lens May Produce Quantum Entanglement Between Atoms

    Geometry of “Super Atoms” May Play a Role in Future Quantum Computer Design

    New System Converts Laser Beam Into Controlled Stream of Single Photons

    Quantum Bits Store Data for Nearly Two Seconds Using Laboratory Grown Diamonds

    Physicists in China Break Quantum Teleportation Record

    First Universal Quantum Network Prototype Operational

    Evidence of Elusive Majorana Fermions Raises Possibilities for Quantum Computing

    3 Comments

    1. Bao-hua ZHANG on November 29, 2023 9:37 pm

      The physical essence of quantum is the spin of topological vortices, rather than a dead and alive cat. Spin generates gravity. Spin generates energy. Spin generates evolution. Spin generates time. If you are really interested in science, you can browse the comments of https://scitechdaily.com/microscope-spacecrafts-most-precise-test-of-key-component-of-the-theory-of-general-relativity/.

      Reply
    2. Bao-hua ZHANG on November 30, 2023 12:35 am

      The physical essence of quantum is the spin of topological vortices. A correct understanding of the physical essence of quantum helps us establish a correct and scientific worldview, and helps physics overcome the quagmire of pseudoscience. Pseudo academic journals are a cancer in the development of sciences and humanities. They will not bring civilization and progress to humaniny society, but will only promote hypocrisy, dirtiness, and ugliness of the pseudo academic community.
      The Physical Review Letters (PRL) are the biggest cancer that spread pseudoscience. The CP violation it spreads has been hindering the progress and development of physics. If you are interested, you can browse the comments of https://scitechdaily.com/microscope-spacecrafts-most-precise-test-of-key-component-of-the-theory-of-general-relativity/.

      Reply
    3. ADAMS THADDEUS on November 30, 2023 6:19 am

      Vector direction and vector distance using z-cSquare+extra plus other sides then square root and adding another element possi Ina solarwind inenable ic

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.