Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Mathematical Breakthrough Makes It Easier to Explore Quantum Entanglement
    Physics

    Mathematical Breakthrough Makes It Easier to Explore Quantum Entanglement

    By SpringerMarch 1, 20203 Comments2 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Quantum Entanglement Illustration
    New research suggests an updated set of equations that allows physicists to easily check whether or not a non-Gaussian state is genuinely quantum.

    Updated mathematical techniques that can distinguish between two types of ‘non-Gaussian curve’ could make it easier for researchers to study the nature of quantum entanglement.

    Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability distributions needed to define the quantum states of these particles deviate from the bell-shaped, or ‘Gaussian’ curves which underly many natural processes. Non-Gaussian curves don’t apply to quantum systems alone, however. They can also be composed of mixtures of regular Gaussian curves, producing difficulties for physicists studying quantum entanglement. In new research published in EPJ D, Shao-Hua Xiang and colleagues at Huaihua University in China propose a solution to this problem. They suggest an updated set of equations that allows physicists to easily check whether or not a non-Gaussian state is genuinely quantum.

    As physicists make more discoveries about the nature of quantum entanglement, they are rapidly making progress toward advanced applications in the fields of quantum communication and computation. The approach taken in this study could prove to speed up the pace of these advances. Xiang and colleagues acknowledge that while all previous efforts to distinguish between both types of non-Gaussian curve have had some success, their choices of Gaussian curves as a starting point have so far meant that no one approach has yet proven to be completely effective. Based on the argument that there can’t be any truly reliable Gaussian reference for any genuinely quantum non-Gaussian state, the researchers present a new theoretical framework.

    In their approach, Xiang’s team encoded non-Gaussian characteristics into the mathematics of ‘Wigner’ distribution functions, which are related to the probability distributions of quantum particles. Their updated equations removed many of the complications typically involved with determining non-Gaussian curves from Gaussian reference points; greatly simplifying the calculations involved. If their techniques become widely accepted, they could enable researchers to more effectively study and exploit one of the most mysterious phenomena known to physics.

    Reference: “A method for efficiently estimating non-Gaussianity of continuous-variable quantum states” by Shao-Hua Xiang, Yu-Jing Zhao, Cheng Xiang, Wei Wen and Xue-Wen Long, 10 November 2019, European Physical Journal D.
    DOI: 10.1140/epjd/e2019-100421-6

    Mathematics Particle Physics Popular Quantum Physics Springer
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Quantum Pioneers: How Magnetic Quivers Are Rewriting the Rules of Particle Physics

    Breakthrough in Quantum Cryptography Demonstrates “Perfectly Secure” Bit Commitment

    Experiment Using Photons Could Detect Quantum-Scale Black Holes

    Photons Traverse Optical Obstacles as Both a Wave and Particle Simultaneously

    “Schrödinger’s Hat” Conceals Matter Waves Inside an Invisible Container

    Physicists Use Cheap Colliders to Probe for Heavy Photons

    Quantum Interference Shown Experimentally in Larger Molecules

    Evidence of Elusive Majorana Fermions Raises Possibilities for Quantum Computing

    Higgs Boson Signals Gain Strength at Large Hadron Collider

    3 Comments

    1. Greg Gallacci on March 2, 2020 8:58 am

      Breakthrough math technique has been proposed, but I didn’t see anything about review.
      There has to be rigorous testing of any math processes.
      How many cases has this technique been useful in solving?
      Does the technique have ‘blind-spots’, do certain ranges of values break the math?
      Math techniques are tools in a growing toolbox, but not enough may be know about corner-cases to call this a breakthrough, more like a step along the way.
      This kind of work is exciting, but the hype makes it hard to do winnowing.

      Reply
    2. Spencer Doidge on March 2, 2020 10:04 am

      How do you make quantum entanglement happen? How do you know it can happen over distances so great you can never travel there and look? Quantum particles are pretty small. Aren’t they kind of hard to find to see if one particle is entangled with another? How do you know where to look?

      Reply
    3. senad hodzic on March 3, 2020 12:37 pm

      its very weird and interesting on the other hand unreal. what is the connection between particles? how connections is established? does entanglement apply to all matter or just certain particles? one of the answer would open billions and billions of new questions.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.