Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Weird Quantum State of Matter Observed for the First Time
    Physics

    Weird Quantum State of Matter Observed for the First Time

    By Martin LaSalle, University of MontrealMay 23, 20224 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Abstract Quantum Physics Spin State
    Scientists have observed an unusual quantum state of matter for the first time.

    Physicist Andrea Bianchi has observed the “quantum spin liquid” state in a magnetic material created in his lab.

    It’s not every day that someone discovered a new state of matter in quantum physics, the scientific field devoted to describing the behavior of atomic and subatomic particles in order to understand their properties.

    Yet this is exactly what an international team of researchers has done. The team includes Andrea Bianchi, University of Montreal physics professor and researcher at the Regroupement québécois sur les matériaux de pointe, and his students Avner Fitterman and Jérémi Dudemaine.

    In a recent article published in the scientific journal Physical Review X, the scientists document a “quantum spin liquid ground state” in a magnetic material created in Bianchi’s lab: Ce2Zr2O7, a compound composed of cerium, zirconium, and oxygen.

    Andrea Bianchi
    Andrea Bianchi

    Like a liquid locked inside an extremely cold solid

    In quantum physics, spin is an internal property of electrons linked to their rotation. It is spin that gives the material in a magnet its magnetic properties.

    In some materials, spin results in a disorganized structure similar to that of molecules in a liquid, hence the expression “spin liquid.”

    In general, a material becomes more disorganized as its temperature rises. This is the case, for example, when water turns into steam. But the principal characteristic of spin liquids is that they remain disorganized even when cooled to as low as absolute zero (–273°C / –459.67°F).

    Spin liquids remain disorganized because the direction of spin continues to fluctuate as the material is cooled instead of stabilizing in a solid state, as it does in a conventional magnet, in which all the spins are aligned.

    Avner Fitterman
    Avner Fitterman

    The art of “frustrating” electrons

    Imagine an electron as a tiny compass that points either up or down. In conventional magnets, the electron spins are all oriented in the same direction, up or down, creating what is known as a “ferromagnetic phase.” This is what keeps photos and notes pinned to your fridge.

    But in quantum spin liquids, the electrons are positioned in a triangular lattice and form a “ménage à trois” characterized by intense turbulence that interferes with their order. The result is an entangled wave function and no magnetic order.

    “When a third electron is added, the electron spins cannot align because the two neighboring electrons must always have opposing spins, creating what we call magnetic frustration,” Bianchi explained. “This generates excitations that maintain the disorder of spins and therefore the liquid state, even at very low temperatures.”

    So how did they add a third electron and cause such frustration?

    Jérémi Dudemaine
    Jérémi Dudemaine

    Creating a ménage à trois

    Enter the frustrated magnet Ce2Zr2O7 created by Bianchi in his lab. To his already long list of accomplishments in developing advanced materials like superconductors, we can now add “master of the art of frustrating magnets!”

    Ce2Zr2O7 is a cerium-based material with magnetic properties. “The existence of this compound was known,” said Bianchi. “Our breakthrough was creating it in a uniquely pure form. We used samples melted in an optical furnace to produce a near-perfect triangular arrangement of atoms and then checked the quantum state.”

    It was this near-perfect triangle that enabled Bianchi and his team at UdeM to create magnetic frustration in Ce2Zr2O7. Working with researchers at McMaster and Colorado State universities, Los Alamos National Laboratory, and the Max Planck Institute for the Physics of Complex System in Dresden, Germany, they measured the compound’s magnetic diffusion.

    Frustrated Cerium Based Magnet
    A sample of the frustrated cerium-based magnet, Ce2Zr2O7, designed in Andrea Bianchi’s lab. Credit: University of Montreal

    “Our measurements showed an overlapping particle function—therefore no Bragg peaks—a clear sign of the absence of classical magnetic order,” said Bianchi. “We also observed a distribution of spins with continuously fluctuating directions, which is characteristic of spin liquids and magnetic frustration. This indicates that the material we created behaves like a true spin liquid at low temperatures.”

    From dream to reality

    After corroborating these observations with computer simulations, the team concluded that they were indeed witnessing a never-before-seen quantum state.

    “Identifying a new quantum state of matter is a dream come true for every physicist,” said Bianchi. “Our material is revolutionary because we are the first to show it can indeed present as a spin liquid. This discovery could open the door to new approaches in designing quantum computers.”

    Frustrated magnets in a nutshell

    Magnetism is a collective phenomenon in which the electrons in a material all spin in the same direction. An everyday example is the ferromagnet, which owes its magnetic properties to the alignment of spins. Neighboring electrons can also spin in opposite directions. In this case, the spins still have well-defined directions but there is no magnetization. Frustrated magnets are frustrated because the neighboring electrons try to orient their spins in opposing directions, and when they find themselves in a triangular lattice, they can no longer settle on a common, stable arrangement. The result: a frustrated magnet.

    Reference: “Case for a U(1)p Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce2Zr2O7” by E. M. Smith, O. Benton, D. R. Yahne, B. Placke, R. Schäfer, J. Gaudet, J. Dudemaine, A. Fitterman, J. Beare, A. R. Wildes, S. Bhattacharya, T. DeLazzer, C. R. C. Buhariwalla, N. P. Butch, R. Movshovich, J. D. Garrett, C. A. Marjerrison, J. P. Clancy, E. Kermarrec, G. M. Luke, A. D. Bianchi, K. A. Ross and B. D. Gaulin, 20 April 2022, Physical Review X.
    DOI: 10.1103/PhysRevX.12.021015

    Magnetism Materials Science Popular Quantum Physics University of Montreal
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Physicists Uncover New Mechanism Enabling Magnetism and Superconductivity to Co-exist in the Same Material

    Hidden Quantum Fluctuations Discovered: Solving 40-Year Puzzle Behind Iron-Iodide’s Mysterious Magnetism

    New Evidence for Controversial Theory That the Electron Is Composed of Two Particles

    A Magnetic Twist to Graphene Could Offer a Dramatic Increase in Processing Speeds Compared to Electronics

    Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle

    Quantum Physicists Crack Mystery of “Strange Metals” – A New State of Matter

    An International Team of Scientists Uncovered Exotic Quantum Properties Hidden in Magnetite

    Long-Standing Quantum Physics Prediction Proven: Bethe Strings Experimentally Observed

    The Experimental Design of a Space-Time Crystal

    4 Comments

    1. Rose on May 23, 2022 2:44 pm

      Good

      Reply
    2. Bryan Royalty on May 24, 2022 8:15 pm

      If you can control the diretion in which electron spin rotates and the magnetic flow you can develop a new propulsion system that can be used in any application not just arial vehicles using the quantum intanglement and spin polarization and frustrated magnet you could vertualy make or move any object regardless of the weight basically making anything capable of flying a zero gravity formula

      Reply
    3. Ryan on May 25, 2022 12:50 pm

      You guys need to fix your webpage layout on mobile so text doesn’t get squeezed in to a five lettet pinch along the edge of a photo. https://photos.app.goo.gl/Rs8wbXzjzW8nDaey8

      Reply
    4. Alphacad on July 23, 2022 5:37 am

      My thoughts is this newly found interaction will eventually be a common system of propulsion.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.