Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Unexpected Behavior of Hybrid Matter–Antimatter Atoms in Superfluid Helium Surprises Physicists at CERN
    Physics

    Unexpected Behavior of Hybrid Matter–Antimatter Atoms in Superfluid Helium Surprises Physicists at CERN

    By CERNMarch 26, 20221 Comment4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Matter Antimatter Concept
    Physicists are surprised by the unexpected behavior of hybrid matter-antimatter atoms in superfluid helium, potentially opening new research avenues in particle physics and beyond.

    The result may open doors to several lines of research in particle physics and beyond.

    A hybrid matter­­–antimatter helium atom containing an antiproton, the proton’s antimatter equivalent, in place of an electron has an unexpected response to laser light when immersed in superfluid helium, reports the ASACUSA collaboration at CERN. The result, described in a paper published on March 16, 2022, in the journal Nature, may open doors to several lines of research.

    “Our study suggests that hybrid matter-antimatter helium atoms could be used beyond particle physics, in particular in condensed-matter physics and perhaps even in astrophysics experiments,” says ASACUSA co-spokesperson Masaki Hori. “We have arguably made the first step in using antiprotons to study condensed matter.”

    ASACUSA Experiment
    ASACUSA Experiment. Credit: CERN

    The ASACUSA collaboration is well used to making hybrid matter-antimatter helium atoms to determine the antiproton’s mass and compare it with that of the proton. These hybrid atoms contain an antiproton and an electron around the helium nucleus (instead of two electrons around a helium nucleus) and are made by mixing antiprotons produced at CERN’s antimatter factory with a helium gas that has a low atomic density and is kept at low temperature.

    Low gas densities and temperatures have played a key role in these antimatter studies, which involve measuring the response of the hybrid atoms to laser light in order to determine their light spectrum. High gas densities and temperatures result in spectral lines, caused by transitions of the antiproton or electron between energy levels, that are too broad, or even obscured, to allow the mass of the antiproton relative to that of the electron to be determined.

    This is why it came as surprise to the ASACUSA researchers that, when they used liquid helium, which has a much higher density than gaseous helium, in their new study, they saw a decrease in the width of the antiproton spectral lines.

    Moreover, when they decreased the temperature of the liquid helium to values below the temperature at which the liquid becomes a superfluid, i.e. flows without any resistance, they found an abrupt further narrowing of the spectral lines.

    Masaki Hori ASACUSA
    Masaki Hori, ASACUSA co-spokesperson. Credit: CERN

    “This behavior was unexpected,” says Anna Sótér, who was the principal PhD student working on the experiment and is now an assistant professor at ETHZ. “The optical response of the hybrid helium atom in superfluid helium is starkly different to that of the same hybrid atom in high-density gaseous helium, as well as that of many normal atoms in liquids or superfluids.”

    The researchers think that the surprising behavior observed is linked to the radius of the electronic orbital, i.e. the distance at which the hybrid helium atom’s electron is located. In contrast to that of many normal atoms, the radius of the hybrid atom’s electronic orbital changes very little when laser light is shone on the atom and thus does not affect the spectral lines even when the atom is immersed in superfluid helium. However, further studies are needed to confirm this hypothesis.

    The result has several ramifications. Firstly, researchers may create other hybrid helium atoms, such as pionic helium atoms, in superfluid helium using different antimatter and exotic particles, to study their response to laser light in detail and measure the particle masses. Secondly, the substantial narrowing of the lines in superfluid helium suggests that hybrid helium atoms could be used to study this form of matter and potentially other condensed-matter phases. Finally, the narrow spectral lines could in principle be used to search for cosmic antiprotons or antideuterons (a nucleus made of an antiproton and an antineutron) of particularly low velocity that hit the liquid or superfluid helium that is used to cool experiments in space or in high-altitude balloons. However, numerous technical challenges must be overcome before the method becomes complementary to existing techniques for searching for these forms of antimatter.

    Reference: “High-resolution laser resonances of antiprotonic helium in superfluid 4He” by Anna Sótér, Hossein Aghai-Khozani, Dániel Barna, Andreas Dax, Luca Venturelli and Masaki Hori, 16 March 2022, Nature.
    DOI: 10.1038/s41586-022-04440-7

    Antimatter CERN Condensed Matter Particle Physics
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Antimatter Levitation Debunked: Groundbreaking CERN Experiment Reveals Gravity’s Pull on Antihydrogen

    Antiprotons in Superfluid: Hybrid Antimatter-Matter Atom Behaves in Unexpected Way

    41-Million-Pixel Vertex Locator May Unlock Some of the Most Enduring Mysteries of the Universe

    Large Hadron Collider Reveals Secret of Antimatter Creation in Cosmic Collisions

    Largest Matter-Antimatter Asymmetry Observed at Large Hadron Collider

    Antimatter: Scientists Trap Elusive Material by Blasting It With Lasers

    New Antimatter Experiment at Large Hadron Collider Will Help With the Search for Dark Matter

    CERN Antimatter Experiment Produces First Beam of Antihydrogen

    Higgs Boson Signals Gain Strength at Large Hadron Collider

    1 Comment

    1. xABBAAA on March 27, 2022 2:39 am

      … what else now?

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.