Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»New Lithium Metal Batteries Promise Double the Energy and Half the Environmental Impact
    Technology

    New Lithium Metal Batteries Promise Double the Energy and Half the Environmental Impact

    By ETH ZurichJuly 9, 20243 Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Next Generation Rechargable Battery Illustration
    Lithium metal batteries, which can store twice the energy of lithium-ion batteries, face environmental challenges due to the need for fluorinated solvents and salts. A research group at ETH Zurich, led by Maria Lukatskaya, developed a method to reduce the fluorine content, enhancing battery stability and making them more eco-friendly and cost-effective.

    ETH Zurich has developed a method that dramatically cuts down on fluorine use in lithium metal batteries, doubling energy storage capacity while enhancing safety and environmental friendliness.

    Lithium metal batteries stand out as a leading contender for the next wave of advanced, high-energy batteries. They offer at least double the energy storage per unit volume compared to the commonly used lithium-ion batteries. As a result, this advancement could allow an electric vehicle to cover double the distance on a single charge or enable a smartphone to require less frequent recharging.

    At present, there is still one crucial drawback with lithium metal batteries: the liquid electrolyte requires the addition of significant amounts of fluorinated solvents and fluorinated salts, which increases its environmental footprint. Without the addition of fluorine, however, lithium metal batteries would be unstable, they would stop working after very few charging cycles and be prone to short circuits as well as overheating and igniting. A research group led by Maria Lukatskaya, Professor of Electrochemical Energy Systems at ETH Zurich, has now developed a new method that dramatically reduces the amount of fluorine required in lithium metal batteries, thereby rendering them more environmentally friendly and more stable as well as cost-effective.

    A stable protective layer increases battery safety and efficiency

    The fluorinated compounds from electrolytes help the formation of a protective layer around the metallic lithium at the negative electrode of the battery. “This protective layer can be compared to the enamel of a tooth,” Lukatskaya explains. “It protects the metallic lithium from continuous reaction with electrolyte components.” Without it, the electrolyte would quickly get depleted during cycling, the cell would fail, and the lack of a stable layer would result in the formation of lithium metal whiskers – ‘dendrites’ – during the recharging process instead of a conformal flat layer.

    Should these dendrites touch the positive electrode, this would cause a short circuit with the risk that the battery heats up so much that it ignites. The ability to control the properties of this protective layer is therefore crucial for battery performance. A stable protective layer increases battery efficiency, safety, and service life.

    Minimizing fluorine content

    “The question was how to reduce the amount of added fluorine without compromising the protective layer’s stability,” says doctoral student Nathan Hong. The group’s new method uses electrostatic attraction to achieve the desired reaction. Here, electrically charged fluorinated molecules serve as a vehicle to transport the fluorine to the protective layer. This means that only 0.1 percent by weight of fluorine is required in the liquid electrolyte, which is at least 20 times lower than in prior studies.

    The optimized method makes batteries greener

    The ETH Zurich research group describes the new method and its underlying principles in a paper recently published in the journal Energy & Environmental Science. An application for a patent has been made.

    One of the biggest challenges was to find the right molecule to which fluorine could be attached and that would also decompose again under the right conditions once it had reached the lithium metal. As the group explains, a key advantage of this method is that it can be seamlessly integrated into the existing battery production process without generating additional costs to change the production setup. The batteries used in the lab were the size of a coin. In a next step, the researchers plan to test the method’s scalability and apply it to pouch cells as used in smartphones.

    Reference: “Robust battery interphases from dilute fluorinated cations” by Chulgi Nathan Hong, Mengwen Yan, Oleg Borodin, Travis P. Pollard, Langyuan Wu, Manuel Reiter, Dario Gomez Vazquez, Katharina Trapp, Ji Mun Yoo, Netanel Shpigel, Jeremy I. Feldblyum and Maria R. Lukatskaya, 2 May 2024, Energy & Environmental Science.
    DOI: 10.1039/D4EE00296B

    Battery Technology Electrolyte Energy ETH Zurich
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Atomic Ballet: Scientists Make Surprising Discovery in Battery Technology

    New Solid-State Electrolyte Designs Could Revolutionize the Battery Industry

    A Step Towards Seasonal Storage: “Freeze-Thaw Battery” Can Freeze Its Energy for Later Use

    MIT Engineers Look Toward All-Solid Lithium Batteries

    Engineers Design Calcium-Based Multi-Element for Liquid Batteries

    Power Conserving Chip May Increase Smartphone Battery Life

    Researchers Produce Uniform Antimony Nanocrystals for the First Time

    Tin Nanocrystals Enable More Power to be Stored in Lithium Ion Batteries

    MIT Researchers Design Inexpensive Liquid Batteries With Distinct Layers

    3 Comments

    1. Kama on July 9, 2024 12:12 pm

      I liked the fact that such batteries are able not only to have two times more charge, but also to preserve the environment. But how complicated is its creation method? Will it be possible to make it in industrial quantities? That’s what everyone is interested in

      Reply
      • Clyde Spencer on July 10, 2024 11:02 am

        Probably a more important question is about the economics. EVs are already painfully expensive, with poor re-sale value. If these batteries are significantly more expensive than conventional Li-ion batteries, and nobody buys the cars, only NASA will use them. Their advantages will be moot if no one can afford them. Producing metallic lithium requires more energy than just purifying lithium salts. Will that create more CO2 and defeat the purpose?

        Reply
    2. Boba on July 11, 2024 4:02 pm

      Promises, promises. Even if this particular promise somehow saw the market, which it won’t, it would still do precisely zero to save the environment. You would still need insane amounts of water and sulphuric acid to process just one ton of lithium ore. In what universe is water depletion and contaminating ground with acid good for the environment?

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.