Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Electron Affinity Unleashed: The Surprising Chemical Capabilities of Flat Fullerene Fragments
    Chemistry

    Electron Affinity Unleashed: The Surprising Chemical Capabilities of Flat Fullerene Fragments

    By Kyoto UniversityJune 22, 2023No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Flat Fullerene Fragments
    Even without the symmetry and curvature of fullerenes, the designed flat fullerene fragments which maintained the pentagonal substructure displayed the same electron accepting properties as fullerenes. Credit: YAP Co., Ltd

     

    Fragments of spherical ‘Buckyball’ molecules have stable electron-accepting ability with great practical potential.

    Researchers at Kyoto University in Japan have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties. The team published their findings in the journal Nature Communications.

    “Our work could lead to new opportunities in a wide range of applications, such as semiconductors, photoelectric conversion devices, batteries, and catalysts,” says group leader Aiko Fukazawa at the Institute for Integrated Cell-Material Sciences (iCeMS).

    Buckminsterfullerene (or simply ‘buckyball’) is a molecule in which 60 carbon atoms are bonded to form a spherical shape. It was named after structural similarities to the geodesic domes designed by the celebrated architect Buckminster Fuller, and its unique structure has continuously attracted the interest of scientists. The buckminsterfullerene and related spherical carbon clusters with different numbers of carbon atoms are colloquially known as fullerenes, after Fuller’s surname. One of their most intriguing characteristics is a capability to accept electrons, a process known as reduction. Because of their electron-accepting character, fullerenes, and their derivatives have been extensively investigated as electron-transporting materials in organic thin-film transistors and organic photovoltaics. Nevertheless, fullerenes are an anomalous class of materials compared with any other conventional organic electron-acceptors, due to their robustness toward accepting multiple electrons.

    Theoretical chemists have proposed three possible factors that might be behind fullerene’s electron-accepting ability: the high symmetry of the entire molecule, its carbon atoms with pyramidally arranged bonds, and the presence of pentagonal substructures distributed among six-membered rings.

    The Kyoto team focused on the influence of the pentagonal rings. They designed and synthesized flattened fragments of fullerene, and experimentally confirmed that these molecules could accept up to an equal number of electrons as the number of five-membered rings in their structure without decomposition.

    “This surprising discovery highlights the crucial significance of the pentagonal substructure for generating stable multi-electron accepting systems,” says Fukazawa.

    Experiments also revealed that the fragments display enhanced absorbance of ultraviolet, visible, and near-infrared light compared to a more limited absorbance by fullerene itself. This might open new possibilities in photochemistry, such as using light to initiate chemical reactions or developing light sensors or solar-powered systems.

    The team will now explore the possibilities their flat fullerene fragments hold in the vast variety of applications associated with electron-transfer processes. It is unusual to get such high electron-accepting ability in molecules composed only of carbon, avoiding the typical requirement to introduce other electron-withdrawing atoms or functional groups onto a carbon-based framework. Going on to explore the effects of incorporating other atoms or chemical groups, however, might yield additional control over and versatility in chemical properties.

    “We hope to pioneer the science and technology of what we call super-electron-accepting hydrocarbons, by taking advantage of their high degree of freedom for exploring the effects of structural modifications,” says Fukazawa.

    Reference: “Flattened 1D fragments of fullerene C60 that exhibit robustness toward multi-electron reduction” by Masahiro Hayakawa, Naoyuki Sunayama, Shu I. Takagi, Yu Matsuo, Asuka Tamaki, Shigehiro Yamaguchi, Shu Seki and Aiko Fukazawa, 15 May 2023, Nature Communications.
    DOI: 10.1038/s41467-023-38300-3

    Kyoto University Organic Chemistry
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Innovating the Impossible: Scientists Transmit First-Ever Redox Domino Reaction

    Revolution in Organic Synthesis: Scientists Revive Century-Old Technique

    Revolutionizing Cancer Care With Bendable X-Ray Detectors

    Violating the Universal Kasha’s Rule – Scientists Uncover Secrets of a Mysterious Blue Molecule

    Revolutionizing Organometallic Chemistry: The 21-Electron Metallocene “Sandwich”

    Beyond the Spectrum: Machine Learning Unlocks Predictive Power in Organic Chemistry Research

    Color-Changing Crystals: The Future of Molecular Switches Unveiled

    Chemists Have Synthesized an Ocean-Based Molecule That Could Fight Parkinson’s

    Breakthrough Material Separates Heavy Water From Normal Water at Room Temperature

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.