Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Science»Scientists Establish Functional Brain-to-Brain Interface between Human and Animal
    Science

    Scientists Establish Functional Brain-to-Brain Interface between Human and Animal

    By SciTechDailyJuly 31, 2013No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Scientists Create Non Invasive Brain to Brain Interface
    The schematics of the implemented brain-to-brain interface (BBI).
    The implementation consists of steady-state visual evoked potential (SSVEP)-based brain-to-computer interface (BCI: on the left column) and focused ultrasound (FUS)-based computer-to-brain interface (CBI) segments (on the right column). doi:10.1371/journal.pone.0060410.g001

    In a newly published open-access study, scientists at Harvard Medical School describe how they implemented a non-invasive brain-to-brain interface between a human and a Sprague-Dawley rat, establishing functional links between the two brains.


    The video recordings of BBI procedure. A volunteer (upper left panel) signaled the intention (stimulate the motor area of a rat brain) with a thumb movement (a green dot appearing on the screen). The increased amplitude of SSVEP triggered the operation of FUS neuromodulation of a rat under the anesthesia (upper left panel), which was subsequently created the animal’s tail movement. The lower panel shows the real-time recordings of volunteer’s attention, raw SSVEP signal, SSVEP signal filtered at 15 Hz, and the tail motion (from the top to the bottom row). doi:10.1371/journal.pone.0060410.s001

    Abstract

    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

    Publication: Yoo S-S, Kim H, Filandrianos E, Taghados SJ, Park S (2013) Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains. PLoS ONE 8(4): e60410. doi:10.1371/journal.pone.0060410

    Editor: Julie A. Chowen, Hosptial Infantil Universitario Niño Jesús, CIBEROBN, Spain

    Received: October 10, 2012; Accepted: February 26, 2013; Published: April 3, 2013

    Funding: This work was supported by National Institutes of Health (R21 NS074124 to SSY), KIST Institutional Program (2E23031 to SSY and HMK), UNIST grant (to SSY), and National Research Foundation of Korea (Korean Ministry of Education, Science and Technology, 2010-0027294 to SSP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

    Image & Video: Yoo S-S, et al., doi:10.1371/journal.pone.0060410.g001

    Brain Brain-machine Interface Harvard University Neurology Neuroscience Popular
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Photos of Einstein’s Brain Show Unique Features

    A Better Understanding of “Muscle Synergies” Could Lead to Improved Stroke Rehabilitation

    Scientists Use Modified Version Rabies to Trace Neural Pathways in the Brain

    Robot Outperforms Humans in Neuroscience Procedure

    Reactivation of the Hippocampus Causes Memory Recall

    Researchers Use FDDNP–PET Scanning to Predict Cognitive Decline

    Neuroscientists Decode Correlation Between Sound and Brain Activity

    Size Does Matter When Determining Alzheimer’s Risk

    Be Like Neo and Learn New Skills Matrix-Style

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.