Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Echoes of Ancient Flares: The “Quiet Monster” of the Milky Way Revealed
    Space

    Echoes of Ancient Flares: The “Quiet Monster” of the Milky Way Revealed

    By Carolyn Collins Petersen, Universe TodayJune 18, 2024No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Black Hole Accetion Disc Art Illustration
    Researchers at Michigan State University investigated the behavior of the supermassive black hole Sagittarius A* at the center of our galaxy, focusing on its consumption of nearby material and the resulting x-ray flares. They used echoes of past flares to study the black hole’s historical activity, revealing that it frequently consumed material and was significantly brighter in the past.

    Scientists studied the past activity of Sagittarius A*, the supermassive black hole in our galaxy, by analyzing light echoes from x-ray flares, indicating frequent past material consumption and a historically brighter state.

    The supermassive black hole at the heart of our Milky Way Galaxy is a quiet monster. However, Sagittarius A* (or Sgr A* for short) is not totally dormant. Occasionally it gobbles down a blob of molecular gas or even a star and then suffers a bit of indigestion. That emits x-ray flares to surrounding space.

    Sgr A* is the closest supermassive black hole to Earth, at a distance of 26,000 light-years. Studying the nearby environment is tough due to the black hole’s intense gravitational pull. It distorts the view of nearby objects, making them difficult to observe. However, there are ways to do it by looking at the effect of its flares on nearby molecular clouds. Astronomers recently found the centuries-old echoes of previously unknown flares that occurred long before there were telescopes to observe them. Those echoes indicate that Sgr A* eats fairly often.

    X-Ray Flare From Sagittarius A*
    Michigan State University researcher Grace Sanger-Johnson found nine previously undiscovered X-ray flares from Sagittarius A*, the Milky Way’s central supermassive black hole, by sifting through a decade’s worth of X-ray data. This NASA image, published over a decade ago, shows an example of an X-ray flare. Credit: NASA/JPL-Caltech

    Grace Sanger-Johnson and Jack Uteg—two researchers from Michigan State University—studied the flares and their light-echoes in detail. What they found shows activity at Sgr A* in the very distant past when Sgr A* ingested material. X-ray emissions from that activity traveled for hundreds of years from Sgr A* to bounce off of and brighten a nearby molecular cloud. That created a light echo that traveled another roughly 26,000 years before reaching Earth. So, when Uteg and Sanger studied these flares and light echoes, they were literally looking into the past.

    Searching for Sgr A* X-ray Flares With NuSTAR

    Sanger-Johnson analyzed ten years’ worth of data looking for X-ray flares generated by Sgr A*’s eating habits. During the search, she found evidence for nine more such outbursts.

    The flares are typically quite dramatic. Because they’re so bright, they provide astronomers a chance to study the immediate environment around the black hole. The data Sanger-Johnson studied came from the NuSTAR mission. It zeroes in on high-energy X-ray and gamma-ray emissions. These typically come from active regions in the hearts of galaxies, supernova explosions, and other active events.

    The data Sanger-Johnson collected and analyzed is now a database of flares from Sgr A. “We hope that by building up this bank of data on Sgr A flares, we and other astronomers can analyze the properties of these X-ray flares and infer the physical conditions inside the extreme environment of the supermassive black hole,” Sanger-Johnson said.

    Chandra Sagittarius A*
    Astronomers do know about outbursts from Sgr A* from other observations. Here’s a view from NASA’s Imaging X-ray Polarimetry Explorer and Chandra X-ray Observatory. The combination of IXPE and Chandra data helped researchers determine that the X-ray light identified in the molecular clouds originated from Sagittarius A* during an outburst approximately 200 years ago. Credit: Chandra: NASA/CXC/SAO; IXPE: NASA/MSFC/F. Marin et al; Sonification Credit: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)

    Tracking the Echoes of Flares

    While Sanger-Johnson was working with the NuSTAR data, undergraduate researcher Jack Uteg studied the activity around the black hole. He analyzed 20 years of data about a giant molecular cloud called “the Bridge.” The data came from observations made by NuSTAR and the European Space Agency’s XMM-Newton observatory. The Bridge lies close to Sgr A* and normally wouldn’t give off its own light.

    So, astronomers took notice when it brightened up in X-rays, according to Uteg, who is constructing a timeline of Sgr A‘s past outbursts. “The brightness we see is most likely the delayed reflection of past X-ray outbursts from Sgr A,” he said. “We first observed an increase in luminosity around 2008. Then, for the next 12 years, X-ray signals from the Bridge continued to increase until it hit peak brightness in 2020.”

    Uteg’s work helped astronomers determine that Sgr A* was about five orders of magnitude brighter in X-rays than it is now. That brightening indicates our central supermassive black hole had probably cannibalized a nearby gas cloud. And, the brightness revealed other properties, according to Uteg. “One of the main reasons we care about this cloud getting brighter is that it lets us constrain how bright the Sgr A* outburst was in the past,” he said.

    NuSTAR Spacecraft
    Illustration of the NuSTAR spacecraft, which has a 30-foot (10-meter) mast that separates the optics modules (right) from the detectors in the focal plane (left). This separation is necessary for the method used to detect X-rays. Credit: NASA/JPL-Caltech

    What Those Light-Echoes From Sgr A* Reveal

    Thanks to Sanger-Brown and Uteg’s work, astronomers have another way around the difficulties of observing around black holes. “Both flares and fireworks light up the darkness and help us observe things we wouldn’t normally be able to,” she said. “That’s why astronomers need to know when and where these flares occur, so they can study the black hole’s environment using that light.”

    Astronomers know that the black hole does gobble up nearby material on a variable basis, but these findings help them constrain how often it happens and how the resulting flares affect the nearby neighborhood. Many questions remain about how often these flares occur and have happened in the past, according to MSU assistant professor Shuo Zhang, who acted as team lead for these two studies.

    “This is the first time that we have constructed a 24-year-long variability for a molecular cloud surrounding our supermassive black hole that has reached its peak X-ray luminosity,” Zhang said. “It allows us to tell the past activity of Sgr A* from about 200 years ago. Our research team at MSU will continue this ‘astroarchaeology game’ to further unravel the mysteries of the Milky Way’s center.”

    These results of the MSU team’s work were presented at the summer 2024 meeting of the American Astronomical Society.

    Adapted from an article originally published on Universe Today.

    For more on this discovery, see Unveiling the Monster Black Hole at Our Galaxy’s Core.

    Astronomy Astrophysics Black Hole Milky Way
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    First-Ever Image of the Supermassive Black Hole at the Center of the Milky Way

    Meet Sagittarius A* – Astronomers Reveal First Image of the Black Hole at the Heart of the Milky Way

    Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live

    Gigantic Bubbles at Center of Milky Way Caused by Powerful Jet of Energy From Supermassive Black Hole

    Black Hole at Center of Milky Way Is Unpredictable and Chaotic – Mysterious Flares Erupt Every Day

    Milky Way’s Supermassive Black Hole Still Smoldering Long After Powerful “Death-Ray” Beam Outburst

    Strangely Massive Black Hole Discovered in Milky Way Satellite Galaxy

    NASA’s New $10 Billion Webb Space Telescope Will Reveal the Supermassive Black Hole at the Heart of the Milky Way

    New Insights Into How Central Supermassive Black Holes Influence the Evolution of Their Host Galaxy

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.