Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Astronomers Discover a Probable Free-Floating Planet, CFBDSIR2149
    Space

    Astronomers Discover a Probable Free-Floating Planet, CFBDSIR2149

    By European Southern ObservatoryNovember 14, 2012No Comments8 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    artist's impression of the free-floating planet
    This artist’s impression shows the free-floating planet CFBDSIR J214947.2-040308.9. This is the closest such object to the Solar System. It does not orbit a star and hence does not shine by reflected light; the faint glow it emits can only be detected in infrared light. Here we see an artist’s impression of an infrared view of the object with an image of the central parts of the Milky Way from the VISTA infrared survey telescope in the background. The object appears blueish in this near-infrared view because much of the light at longer infrared wavelengths is absorbed by methane and other molecules in the planet’s atmosphere. In visible light the object is so cool that it would only shine dimly with a deep red color when seen close-up. Credit: ESO/L. Calçada/P. Delorme/Nick Risinger (skysurvey.org)/R. Saito/VVV Consortium

    Using the Canada-France-Hawaii Telescope and ESO’s Very Large Telescope, astronomers discovered CFBDSIR2149, a large free-floating object near the AB Doradus Moving Group.

    Astronomers using ESO’s Very Large Telescope and the Canada-France-Hawaii Telescope have identified a body that is very probably a planet wandering through space without a parent star. This is the most exciting free-floating planet candidate so far and the closest such object to the Solar System at a distance of about 100 light-years. Its comparative proximity, and the absence of a bright star very close to it, has allowed the team to study its atmosphere in great detail. This object also gives astronomers a preview of the exoplanets that future instruments aim to image around stars other than the Sun.

    Free-floating planets are planetary-mass objects that roam through space without any ties to a star. Possible examples of such objects have been found before,[1] but without knowing their ages, it was not possible for astronomers to know whether they were really planets or brown dwarfs — “failed” stars that lack the bulk to trigger the reactions that make stars shine.

    But astronomers have now discovered an object, labeled CFBDSIR2149,[2] that seems to be part of a nearby stream of young stars known as the AB Doradus Moving Group. The researchers found the object in observations from the Canada-France-Hawaii Telescope and harnessed the power of ESO’s Very Large Telescope to examine its properties.[3]

    The AB Doradus Moving Group is the closest such group to the Solar System. Its stars drift through space together and are thought to have formed at the same time. If the object is associated with this moving group — and hence it is a young object — it is possible to deduce much more about it, including its temperature, mass, and what its atmosphere is made of.[4] There remains a small probability that the association with the moving group is by chance.


    This video shows an artist’s impression of the free-floating planet CFBDSIR J214947.2-040308.9. In the first part of the sequence the planet appears as a dark disc in visible light, silhouetted against the star clouds of the Milky Way. This is the closest such object to the Solar System and the most exciting candidate free-floating planet found so far. It does not orbit a star and hence does not shine by reflected light; the faint glow it emits can only be detected in infrared light. In the final sequence we see an infrared view of the object with the central parts of the Milky Way as seen by the VISTA infrared survey telescope as background. The object appears blueish in this near-infrared view because much of the light at longer infrared wavelengths is absorbed by methane and other molecules in the planet’s atmosphere. In visible light the object is so cool that it would only shine dimly with a deep red color when seen close-up.

    The link between the new object and the moving group is the vital clue that allows astronomers to find the age of the newly discovered object.[5] This is the first isolated planetary mass object ever identified in a moving group, and the association with this group makes it the most interesting free-floating planet candidate identified so far.

    “Looking for planets around their stars is akin to studying a firefly sitting one centimeter away from a distant, powerful car headlight,” says Philippe Delorme (Institut de planétologie et d’astrophysique de Grenoble, CNRS/Université Joseph Fourier, France), lead author of the new study. “This nearby free-floating object offered the opportunity to study the firefly in detail without the dazzling lights of the car messing everything up.”

    Free-floating objects like CFBDSIR2149 are thought to form either as normal planets that have been booted out of their home systems, or as lone objects like the smallest stars or brown dwarfs. In either case, these objects are intriguing — either as planets without stars, or as the tiniest possible objects in a range spanning from the most massive stars to the smallest brown dwarfs.

    “These objects are important, as they can either help us understand more about how planets may be ejected from planetary systems, or how very light objects can arise from the star formation process,” says Philippe Delorme. “If this little object is a planet that has been ejected from its native system, it conjures up the striking image of orphaned worlds, drifting in the emptiness of space.”

    These worlds could be common — perhaps as numerous as normal stars.[6] If CFBDSIR2149 is not associated with the AB Doradus Moving Group it is trickier to be sure of its nature and properties, and it may instead be characterized as a small brown dwarf. Both scenarios represent important questions about how planets and stars form and behave.

    “Further work should confirm CFBDSIR2149 as a free-floating planet,” concludes Philippe Delorme. “This object could be used as a benchmark for understanding the physics of any similar exoplanets that are discovered by future special high-contrast imaging systems, including the SPHERE instrument that will be installed on the VLT.”

    Reference: “CFBDSIR2149-0403: a 4–7 Jupiter-mass free-floating planet in the young moving group AB Doradus?” by P. Delorme, J. Gagné, L. Malo, C. Reylé, E. Artigau, L. Albert, T. Forveille, X. Delfosse, F. Allard and D. Homeier, 14 November 2012, Astronomy & Astrophysics.
    DOI: 10.1051/0004-6361/201219984

    Notes

    1. Numerous candidates for these kinds of planets have been found before (with corresponding press releases and papers, e.g. from Science Magazine, Nature, Royal Astronomical Society). These objects started to become known in the 1990s, when astronomers found that the point at which a brown dwarf crosses over into the planetary mass range is difficult to determine. More recent studies have suggested that there may be huge numbers of these little bodies in our galaxy, a population numbering almost twice as many as the main sequence stars present.
    2. The object was identified as part of an infrared extension of the Canada-France Brown Dwarfs Survey (CFBDS), a project hunting for cool brown dwarf stars. It is also referred to as CFBDSIR J214947.2-040308.9.
    3. The team observed CFBDSIR2149 with both the WIRCam camera on the Canada France Hawaii Telescope on Hawaii, and the SOFI camera on the ESO New Technology Telescope in Chile. The images taken at different times allowed the object’s proper motion across the sky to be measured and compared to members of the AB Doradus Moving Group. The detailed study of the object’s atmosphere was made using the X-shooter spectrograph on ESO’s Very Large Telescope at the Paranal Observatory.
    4. The association with the AB Doradus Moving Group would pin down the mass of the planet to approximately 4–7 times the mass of Jupiter, with an effective temperature of approximately 430 degrees Celsius. The planet’s age would be the same as the moving group itself — 50 to 120 million years.
    5. The team’s statistical analysis of the object’s proper motion — its angular change in position across the sky each year — shows an 87% probability that the object is associated with the AB Doradus Moving Group, and more than 95% probability that it is young enough to be of planetary mass, making it much more likely to be a rogue planet rather than a small “failed” star. More distant free-floating planet candidates have been found before in very young star clusters, but could not be studied in detail.
    6. These free-floating objects can also reveal their presence when they pass in front of a star. The light traveling towards us from the background star is bent and distorted by the gravity of the object, causing the star to suddenly and briefly brighten — a process known as gravitational microlensing. Microlensing surveys of the Milky Way, such as OGLE, may have detected free-floating planets in this way (for example, a Microlensing Experiment published in Nature in 2011).

    Astronomy Astrophysics European Southern Observatory Planetary Science Popular
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Astronomers Find an Unexpected Amount of Giant Planets in Star Cluster Messier 67

    Astronomers Discover Unexpectedly Cold Grains in a Planet-Forming Disc

    ALMA Reveals New Evidence of Young Planets

    ALMA Reveals Double Star with Wildly Misaligned Planet-Forming Discs

    Astronomers Measure the Length of an Exoplanet Day

    ALMA Reveals Unexpected Gas Clump in Debris Disc Around Beta Pictoris

    HARPS Discovers First Exoplanet Orbiting a Solar Twin in a Star Cluster

    Three Super-Earths Discovered in Habitable Zone of Nearby Star GJ 677C

    ALMA “Dust Trap” Observations Solve Planet Formation Mystery

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.