Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Unusual Material Features Spontaneous Superconducting Currents – Why It Superconducts at All Is Completely Unknown
    Technology

    Unusual Material Features Spontaneous Superconducting Currents – Why It Superconducts at All Is Completely Unknown

    By Max Planck Institute for Chemical Physics of SolidsMarch 16, 2021No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Superconductor Illustration
    In a very small number of known superconductors, the origin of spontaneous electrical currents during the onset of superconductivity is unknown. Understanding this phenomenon has become a crucial test for physicists studying superconductivity.

    Superconductivity is a complete loss of electrical resistance. Superconductors are not merely very good metals: it is a fundamentally different electronic state. In normal metals, electrons move individually, and they collide with defects and vibrations in the lattice. In superconductors, electrons are bound together by an attractive force, which allows them to move together in a correlated way and avoid defects.

    In a very small number of known superconductors, the onset of superconductivity causes spontaneous electrical currents to flow. These currents are very different from those in a normal metal wire: they are built into the ground state of the superconductor, and so they cannot be switched off. For example, in a sheet of a superconducting material, currents might appear that flow around the edge, as shown in the figure.

    This is a very rare form of superconductivity, and it always indicates that the attractive interaction is something unusual. Sr2RuO4 is one famous material where this type of superconductivity is thought to occur. Although the transition temperature is low – Sr2RuO4 superconducts only below 1.5 Kelvin – the reason why it superconducts at all is completely unknown. To explain the superconductivity in this material has become a major test of physicists’ understanding of superconductivity in general. Theoretically, it is very difficult to obtain spontaneous currents in Sr2RuO4 from standard models of superconductivity, and so if they are confirmed then a new model for superconductivity – an attractive force that is not seen in other materials – might be required.

    Spontaneous Superconducting Currents in Sr2RuO4
    Left: schematic of superconductivity-induced spontaneous electrical currents in Sr2RuO4. Right: crystal structure of Sr2RuO4. Credit: © MPI CPfS

    The way that these electrical currents are detected is subtle. Subatomic particles known as muons are implanted into the sample. The spin of each muon then precesses in whatever magnetic field exists at the muon stopping site. In effect, the muons act as sensitive detectors of magnetic field, that can be placed inside the sample. From such muon implantation experiments it has been found that spontaneous magnetic fields appear when Sr2RuO4 becomes superconducting, which shows that there are spontaneous electrical currents.

    However, because the signal is subtle, researchers have questioned whether it is in fact real. The onset of superconductivity is a major change in the electronic properties of a material, and maybe this subtle additional signal appeared because the measurement apparatus was not properly tuned.

    In this work, scientists at the Max Planck Institute for Chemical Physics of Solids, the Technical University of Dresden, and the Paul Scherrer Institute (Switzerland) have shown that when uniaxial pressure is applied to Sr2RuO4, the spontaneous currents onset at a lower temperature than the superconductivity. In other words, the transition splits into two: first superconductivity, then spontaneous currents. This splitting has not been clearly demonstrated in any other material, and it is important because it shows definitively that the second transition is real. The spontaneous currents must be explained scientifically, not as a consequence of imperfect measurement. This may require a major re-write of our understanding of superconductivity.

    Reference: “Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress” by Vadim Grinenko, Shreenanda Ghosh, Rajib Sarkar, Jean-Christophe Orain, Artem Nikitin, Matthias Elender, Debarchan Das, Zurab Guguchia, Felix Brückner, Mark E. Barber, Joonbum Park, Naoki Kikugawa, Dmitry A. Sokolov, Jake S. Bobowski, Takuto Miyoshi, Yoshiteru Maeno, Andrew P. Mackenzie, Hubertus Luetkens, Clifford W. Hicks and Hans-Henning Klauss, 4 March 2021, Nature Physics.
    DOI: 10.1038/s41567-021-01182-7

    Materials Science Max Planck Institute Popular Superconductor
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Unconventional Superconductor May Unlock New Ways To Build Quantum Computers

    New High-Temperature Superconductor Synthesized by Scientists

    Some Precious Metals – Such As Gold and Silver – Lose Their Conductive Property, If They Are Thin Enough

    Nanoscale Coating Repels Virtually Any Liquid

    Liquid Metal Used in Ultra-Stretchable Conducting Wires

    Duke University Creates “Perfect” Microwave Cloak

    Nanosheet-Flower Structure Boosts Energy Storage

    New Insights Into How Superconducting Materials Interact With Magnetic Ones

    Spray Paint Battery Can be Painted on Virtually Any Surface

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.