Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Chance Discovery Results in New Type of Transistor for High-Power Electronic Devices
    Technology

    Chance Discovery Results in New Type of Transistor for High-Power Electronic Devices

    By Linköping UniversityJanuary 7, 20202 Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Arwen Transmission Electron Microscope
    An important part of the work has been conducted on one of the world’s most outstanding transmission electron microscopes, Arwen, at Linköping University. Credit: Magnus Johansson

    Transmorphic epitaxial growth of AlN nucleation layers on SiC substrates for high-breakdown thin GaN transistors.

    A new method to fit together layers of semiconductors as thin as a few nanometers has resulted in not only a scientific discovery but also a new type of transistor for high-power electronic devices. The result, published in Applied Physics Letters, has aroused huge interest.

    The achievement is the result of a close collaboration between scientists at Linköping University and SweGaN, a spin-off company from materials science research at LiU. The company manufactures tailored electronic components from gallium nitride.

    Electric vehicles

    Gallium nitride, GaN, is a semiconductor used for efficient light-emitting diodes. It may, however, also be useful in other applications, such as transistors, since it can withstand higher temperatures and current strengths than many other semiconductors. These are important properties for future electronic components, not least for those used in electric vehicles.

    Gallium nitride vapor is allowed to condense onto a wafer of silicon carbide, forming a thin coating. The method in which one crystalline material is grown on a substrate of another is known as “epitaxy.” The method is often used in the semiconductor industry since it provides great freedom in determining both the crystal structure and the chemical composition of the nanometer film formed.

    The combination of gallium nitride, GaN, and silicon carbide, SiC (both of which can withstand strong electric fields), ensures that the circuits are suitable for applications in which high powers are needed.

    The fit at the surface between the two crystalline materials, gallium nitride and silicon carbide, is, however, poor. The atoms end up mismatched with each other, which leads to failure of the transistor. This has been addressed by research, which subsequently led to a commercial solution, in which an even thinner layer of aluminum nitride was placed between the two layers.

    The engineers at SweGaN noticed by chance that their transistors could cope with significantly higher field strengths than they had expected, and they could not initially understand why. The answer can be found at the atomic level – in a couple of critical intermediate surfaces inside the components.

    Transmorphic epitaxial growth

    Researchers at LiU and SweGaN, led by LiU’s Lars Hultman and Jun Lu, present in Applied Physics Letters an explanation of the phenomenon, and describe a method to manufacture transistors with an even greater ability to withstand high voltages.

    Lars Hultman
    Lars Hultman. Credit: Linköping University

    The scientists have discovered a previously unknown epitaxial growth mechanism that they have named “transmorphic epitaxial growth.” It causes the strain between the different layers to be gradually absorbed across a couple of layers of atoms. This means that they can grow the two layers, gallium nitride, and aluminum nitride, on silicon carbide in manner so as to control at the atomic level how the layers are related to each other in the material. In the laboratory they have shown that the material withstands high voltages, up to 1800 V. If such a voltage were placed across a classic silicon-based component, sparks would start flying and the transistor would be destroyed.

    “We congratulate SweGaN as they start to market the invention. It shows efficient collaboration and the utilization of research results in society. Due to the close contact we have with our previous colleagues who are now working for the company, our research rapidly has an impact also outside of the academic world,” says Lars Hultman.

    Huge interest

    The research has been funded by research grants from the Knut and Alice Wallenberg Foundation and from the CoolHEMT program, part of the EU Horizon 2020. The article, which is linked below, was specially selected by the editor of Applied Physics Letters, and is one of the journal’s most-read articles, with nearly 1,000 downloads one week after publication on November 25, 2019. It is also featured on the journal´s cover.

    Reference: “Transmorphic epitaxial growth of AlN nucleation layers on SiC substrates for high-breakdown thin GaN transistors” by Jun Lu, Jr-Tai Chen, Martin Dahlqvist, Riad Kabouche, Farid Medjdoub, Johanna Rosen, Olof Kordina and Lars Hultman, 25 November 2019, Applied Physics Letters.
    DOI: 10.1063/1.5123374

    A center of expertise, C3NiT, has also been established at LiU for research and development of III nitride technology, financed by Vinnova and with the involvement of several large and small companies.

    Electrical Engineering Linkoping University Materials Science Popular Semiconductors
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Energy Saving Electronics Breakthrough – Paving Way for a Carbon-Neutral Society

    Technology Breakthrough Enables Practical Semiconductor Spintronics

    “Mount Everest” of Electronic Materials: Stretching Diamond for Next-Generation Microelectronics

    Smarter Artificial Intelligence Technology in a New Light-Powered Chip

    New Recipe for Single-Atom Transistors May Enable Quantum Computers With Unparalleled Memory and Processing Power

    Revolutionary Light-Emitting Silicon – “Holy Grail” Breakthrough After 50 Years of Work

    Fastest High-Precision 3D Printer – Unmatched Speed With Submicrometer Accuracy

    Remarkable New Coating Helps Electronics Stay Cool by “Sweating”

    Large Scale Integrated Circuits Produced in Printing Press Based on Organic Electrochemical Transistors

    2 Comments

    1. John-Paul on January 7, 2020 3:20 pm

      Dreams and reality are 2 different things. Goes into darkness as life said no to that sort of thing and will again soon and again and again and again.

      Reply
    2. Jim Anderton on January 12, 2020 8:42 am

      Interesting…on the macro level, use of a thin interlayer between substrates with a different CTE is a foundation for transient liquid phase and other forms of diffusion bonding. Exciting research.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Researchers Uncover Alarming Link Between Plastic Exposure and Autism in Male Offspring
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.