Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Scientists Uncover Surprising Efficiency of “Messy” Supercapacitors
    Technology

    Scientists Uncover Surprising Efficiency of “Messy” Supercapacitors

    By University of CambridgeApril 26, 2024No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Supercapacitor Art
    Researchers at the University of Cambridge found that increasing the disorder in supercapacitors’ carbon electrodes significantly enhances their energy storage capacity. This breakthrough could elevate the role of supercapacitors in the energy transition and public transportation sectors. Credit: SciTechDaily.com

    The energy density of supercapacitors, devices similar to batteries that can recharge rapidly in just seconds or minutes, can be improved by increasing the ‘messiness’ of their internal structure.

    Researchers led by the University of Cambridge used experimental and computer modeling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.

    Supercapacitors are a key technology for the energy transition and could be useful for certain forms of public transport, as well as for managing intermittent solar and wind energy generation, but their adoption has been limited by poor energy density.

    The researchers say their results, reported in the journal Science, represent a breakthrough in the field and could reinvigorate the development of this important net-zero technology.

    Comparing Supercapacitors and Batteries

    Like batteries, supercapacitors store energy, but supercapacitors can charge in seconds or a few minutes, while batteries take much longer. Supercapacitors are far more durable than batteries, and can last for millions of charge cycles. However, the low energy density of supercapacitors makes them unsuitable for delivering long-term energy storage or continuous power.

    “Supercapacitors are a complementary technology to batteries, rather than a replacement,” said Dr. Alex Forse from Cambridge’s Yusuf Hamied Department of Chemistry, who led the research. “Their durability and extremely fast charging capabilities make them useful for a wide range of applications.”

    Dame Clare Grey, Xinyu Liu, and Alex Forse
    Left to right: Professor Dame Clare Grey, Xinyu Liu, Dr. Alex Forse. Credit: Nathan Pitt

    A bus, train, or metro powered by supercapacitors, for example, could fully charge in the time it takes to let passengers off and on, providing it with enough power to reach the next stop. This would eliminate the need to install any charging infrastructure along the line. However, before supercapacitors are put into widespread use, their energy storage capacity needs to be improved.

    While a battery uses chemical reactions to store and release charge, a supercapacitor relies on the movement of charged molecules between porous carbon electrodes, which have a highly disordered structure. “Think of a sheet of graphene, which has a highly ordered chemical structure,” said Forse. “If you scrunch up that sheet of graphene into a ball, you have a disordered mess, which is sort of like the electrode in a supercapacitor.”

    Breakthrough in Understanding Electrode Structure

    Because of the inherent messiness of the electrodes, it’s been difficult for scientists to study them and determine which parameters are the most important when attempting to improve performance. This lack of clear consensus has led to the field getting a bit stuck.

    Many scientists have thought that the size of the tiny holes, or nanopores, in the carbon electrodes was the key to improved energy capacity. However, the Cambridge team analyzed a series of commercially available nanoporous carbon electrodes and found there was no link between pore size and storage capacity.

    Xinyu Liu With Models of Graphene and a Disordered Carbon Electrode
    Xinyu Liu with a model of graphene (left) and a disordered carbon electrode (right). Credit: Nathan Pitt

    Forse and his colleagues took a new approach and used nuclear magnetic resonance (NMR) spectroscopy – a sort of ‘MRI’ for batteries – to study the electrode materials. They found that the messiness of the materials – long thought to be a hindrance – was in fact the key to their success.

    “Using NMR spectroscopy, we found that energy storage capacity correlates with how disordered the materials are – the more disordered materials are able to store more energy,” said first author Xinyu Liu, a PhD candidate co-supervised by Forse and Professor Dame Clare Grey. “Messiness is something that’s hard to measure – it’s only possible thanks to new NMR and simulation techniques, which is why messiness is a characteristic that’s been overlooked in this field.”

    When analyzing the electrode materials with NMR spectroscopy, a spectrum with different peaks and valleys is produced. The position of the peak indicates how ordered or disordered the carbon is. “It wasn’t our plan to look for this, it was a big surprise,” said Forse. “When we plotted the position of the peak against energy capacity, a striking correlation came through – the most disordered materials had a capacity almost double that of the most ordered materials.”

    So why is mess good? Forse says that’s the next thing the team is working on. More disordered carbons store ions more efficiently in their nanopores, and the team are hoping to use these results to design better supercapacitors. The messiness of the materials is determined at the point they are synthesized.

    “We want to look at new ways of making these materials, to see how far messiness can take you in terms of improving energy storage,” said Forse. “It could be a turning point for a field that’s been stuck for a little while. Clare and I started working on this topic over a decade ago, and it’s exciting to see a lot of our previous fundamental work now having a clear application.”

    Reference: “Structural disorder determines capacitance in nanoporous carbons” by Xinyu Liu, Dongxun Lyu, Céline Merlet, Matthew J. A. Leesmith, Xiao Hua, Zhen Xu, Clare P. Grey and Alexander C. Forse, 18 April 2024, Science.
    DOI: 10.1126/science.adn6242

    The research was supported in part by the Cambridge Trusts, the European Research Council, and UK Research and Innovation (UKRI).

    Battery Technology Energy Supercapacitors University of Cambridge
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Scientists Develop Battery Capable of Rapid Charging in Just a Few Seconds

    Revolutionary One-Atom-Thick Ribbons Set To Transform Batteries and Solar Cells

    Ultramicro Supercapacitor: A Game-Changing Energy Storage Marvel

    New Low-Cost Battery-Like Device Captures CO2 Emissions While It Charges

    Photosynthesis Power: A Reliable and Renewable Biological Photovoltaic Cell

    MXene Nanomaterial Offers Flexible and Stretchable High-Capacity Energy Storage

    New Imaging Technique Shows How Smartphone Batteries Could Charge in Minutes

    Rice Researchers Develop Thin-Film Battery for Portable, Wearable Electronics

    A Cost-Effective Fabrication Method for Micro-Scale Graphene-Based Supercapacitors

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.