Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Revolutionary One-Atom-Thick Ribbons Set To Transform Batteries and Solar Cells
    Technology

    Revolutionary One-Atom-Thick Ribbons Set To Transform Batteries and Solar Cells

    By University College LondonNovember 20, 2023No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Abstract Energy Technology Ribbon
    UCL researchers have created arsenic-alloyed phosphorus nanoribbons that enhance the efficiency of batteries and solar cells. These nanoribbons conduct electricity more effectively and offer potential applications in quantum computing and energy storage, promising scalable and cost-effective production.

    Researchers at University College London have developed one-atom-thick ribbons composed of a phosphorus and arsenic alloy. This breakthrough material holds the potential to significantly enhance the performance of various devices including batteries, supercapacitors, and solar cells.

    The research team discovered phosphorus nanoribbons in 2019. The “wonder material,” predicted to revolutionize devices ranging from batteries to biomedical sensors, has since been used to increase lithium-ion battery lifetimes and solar cell efficiencies.

    However, phosphorus-only materials do not conduct electricity very well, hindering their usage for certain applications.

    Enhancements with Arsenic

    In the new study, published in the Journal of the American Chemical Society, the researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 C, while retaining the highly useful properties of the phosphorus-only ribbons.

    Arsenic Phosphorene Nanoribbons
    Credit: Journal of the American Chemical Society (2023). DOI: 10.1021/jacs.3c03230

    Senior author Dr. Adam Clancy (UCL Chemistry) said: “Early experimental work has already shown the remarkable promise of phosphorus nanoribbons, created for the first time by our UCL team in 2019. In 2021, for instance, it was shown that adding the nanoribbons as a layer to perovskite solar cells allowed the cells to harness more energy from the Sun.

    “Our latest work in alloying phosphorus nanoribbons with arsenic opens up further possibilities – in particular, improving energy storage of batteries and supercapacitors, and enhancing near-infrared detectors used in medicine.

    “The arsenic-phosphorus ribbons have also turned out to be magnetic which we believe comes from atoms along the edge, which makes them potentially of interest for quantum computers too.

    “More widely, the study shows that alloying is a powerful tool for controlling the properties and thus applications and potential of this growing nanomaterial family.” The researchers say the same technique could be used to make alloys combining phosphorus with other elements such as selenium or germanium.

    To be used as an anode material in lithium-ion or sodium-ion batteries, phosphorus nanoribbons currently would need to be mixed with a conductive material like carbon. By adding arsenic, the carbon filler is no longer necessary and can be removed, enhancing the amount of energy the battery can store and the speed at which it can be charged and discharged.

    In solar cells, meanwhile, arsenic-phosphorus nanoribbons can further improve the flow of charge through the devices, enhancing the cells’ efficiency.

    Production Process and Properties

    The arsenic-phosphorus ribbons created by the research team were typically a few layers high, several micrometers long, and tens of nanometres wide. They were made by mixing crystals formed from sheets of phosphorus and arsenic with lithium dissolved in liquid ammonia at -50 degrees C. (After 24 hours, the ammonia is removed and replaced with an organic solvent.) The sheets’ atomic structure means the lithium ions can travel in one direction only, not laterally, causing cracking that creates the ribbons.

    A key characteristic of the nanoribbons is that they also have extremely high “hole mobility”. Holes are the opposite partners to electrons in electrical transport, so improving their mobility (a measure of the speed at which they move through the material) helps electrical current move more efficiently.

    The nanoribbons could be produced at scale in a liquid that could then be used to apply them in volume at low cost for different applications.

    Phosphorus nanoribbons were discovered at UCL by an interdisciplinary team led by Professor Chris Howard (UCL Physics & Astronomy). Since the isolation of 2-dimensional phosphorene sheets in 2014, more than 100 theoretical studies have predicted new and exciting properties that could emerge by producing narrow ribbons of this material.

    Reference: “Production of Magnetic Arsenic–Phosphorus Alloy Nanoribbons with Small Band Gaps and High Hole Conductivities” by Feng Fei Zhang, Eva Aw, Alexander G. Eaton, Rebecca R. C. Shutt, Juhwan Lim, Jung Ho Kim, Thomas J. Macdonald, Cesar III D. L. Reyes, Arjun Ashoka, Raj Pandya, Oliver D. Payton, Loren Picco, Caroline E. Knapp, Furio Corà, Akshay Rao, Christopher A. Howard and Adam J. Clancy, 8 August 2023, Journal of the American Chemical Society.
    DOI: 10.1021/jacs.3c03230

    Battery Technology Energy Photovoltaics Popular Solar Cells Supercapacitors University College London
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Ultramicro Supercapacitor: A Game-Changing Energy Storage Marvel

    Solar’s Slim Solution: The Rise of High-Efficiency Thin Silicon Cells

    Major Power Efficiency Boost for Flexible Solar Cells

    Photosynthesis Power: A Reliable and Renewable Biological Photovoltaic Cell

    New Photovoltaic Materials Developed by Stanford Scientists for Ultrathin, Lightweight Solar Panels

    Next-Generation Energy Storage Breakthrough: Fast-Charging, Long-Running, Flexible

    New Shortcut Simplifies the Production of Solar Cells

    MIT Engineers Recycle Old Batteries Into Solar Cells

    First All Carbon Solar Cell Made From Nanotubes and Buckyballs

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.