Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Demystifying the Dark Art of Electrolyte Design for Next-Generation Batteries
    Technology

    Demystifying the Dark Art of Electrolyte Design for Next-Generation Batteries

    By Andrew Nellis, University of ChicagoJune 17, 20222 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    New Battery Technology Concept
    A University of Chicago scientist is demystifying the dark art of electrolyte design.

    Creating the Building Blocks for Next-Generation Batteries

    With more than a trillion tons of carbon dioxide now circulating in the atmosphere, and global temperatures projected to rise anywhere from 2 degrees to 9.7 degrees Fahrenheit (1.1 to 5.4 degrees Celsius) in the next 80 years, switching from fossil fuels to renewable energy is a pressing issue demanding critical attention. To make the transformation, humanity will need entirely new energy storage technologies.

    Lithium-ion batteries, the current standard, rely on flammable electrolytes and can only be recharged about a thousand times before their capacity is dramatically reduced. Other potential successors have their own issues. Lithium metal batteries, for example, suffer from a short lifespan due to long needle-like deformities called dendrites that develop whenever electrons are shuttled between Li-metal batteries’ anode and cathode.

    Chibueze Amanchukwu
    To usher in the next generation of batteries and boost carbon capture technology, Asst. Prof. Chibueze Amanchukwu of Pritzker Molecular Engineering is looking for a solution in electrolytes. Credit: Photo by John Zich

    Such thorny chemistry boils down to one flawed and often overlooked process—modern electrolyte design, according to Chibueze Amanchukwu, Neubauer Family Assistant Professor of Molecular Engineering at the Pritzker School of Molecular Engineering at the University of Chicago.

    “The current approach to battery design, specifically with electrolytes, works like this: I want a new property, I look for a new molecule, and I mix it together and hope that it works,” said Amanchukwu. “But because battery chemistries are always changing, it becomes a nightmare to predict what new compound you should use out of the million possible options. We want to demystify the dark art of electrolyte design.”

    The third key component within a battery is electrolytes, which are specialized substances, usually liquids, that allow ions to move from the anode to the cathode.
    To work, an electrolyte must have a long list of extremely specific characteristics, such as proper ionic conductivity and oxidative stability, requirements that are made much more difficult by the millions of possible chemical combinations.

    “We want to demystify the dark art of electrolyte design.”

    —Asst. Prof. Chibueze Amanchukwu

    Amanchukwu and his team want to catalog as many electrolyte components as possible, allowing any researcher to design, synthesize, and characterize a multifunctional electrolyte suited to their needs. They liken the approach to a popular construction toy.

    “The beautiful thing about LEGOs, and the aspect we’re going to replicate, is the ability to build different structures out of individual pieces,” Amanchukwu said. “You can use the same 100 LEGO pieces to build any number of structures because you know how each piece fits together—we want to do that with electrolytes.”

    How to catalog a million components

    To create his electrolyte building blocks, Amanchukwu first turns to the archives. Scientists have been studying electrolytes for over a century, and their data is available to anyone willing to sift through it.

    Amanchukwu and his team use “natural language processing,” a type of machine learning program, to scrape data from scientific literature. Once a few promising compounds are found, researchers synthesize and test them with tools like nuclear magnetic resonance (NMR), a cousin of MRI, to better understand their properties and refine them even further.

    Chibueze Amanchukwu and Lucy Schmid
    Students in the Amanchukwu lab, like molecular engineering major Lucy Schmid (right), work directly on next-gen battery chemistries and carbon capture experiments. Credit: Photo by John Zich

    Once tested, the compounds are put into actual batteries and studied again, and the resulting data is then fed back into the system. 

    The end result is a database of electrolyte components that can be easily combined depending on need. Such a system would dramatically accelerate new battery development, but its impact would be felt even beyond that.  

    Carbon capture technology currently relies on electrolytes in two ways. During the capture phase, an electrolyte acts as a solvent to help separate carbon dioxide from the air, and later a second electrolyte facilitates the C02’s conversation into a usable product like ethylene.

    However, this process is energy-intensive. Amanchukwu believes that an electrolyte with the right attributes would be able to combine both steps, absorbing CO2 and converting it into a useful product at the same time.

    A personal quest

    Amanchukwu’s efforts to create change extend beyond the laboratory. He oversees educational and outreach initiatives at PME, many of which focus on attracting underrepresented minorities to STEM fields.

    Chibueze Amanchukwu Battery Materials Technology
    Asst. Prof. Chibueze Amanchukwu holds a sample of battery materials for testing and characterization. Credit: Photo by John Zich

    His annual Battery Day teaches K-12 students about battery development through experiential lessons and art. It will also include coordinated workshops at Nigerian universities that cover subjects like “applying to graduate school” and “careers in energy.”

    When asked what drives his outreach endeavors and his mission to transform electrolyte design, Amanchukwu explained that both subjects are close to home, first citing several natural disasters his family lived through in Texas and California.

    “As someone from Nigeria,” he added, “I realized that any technology we make needs to be relevant to people back home so that we are all fighting to solve climate change problems and not leaving anyone behind.”

    Battery Technology Energy Materials Science University of Chicago
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Researchers Watch Solid-State Batteries Charge and Discharge Using X-ray Tomography

    Supercapacitors Challenge Batteries: Powerful Graphene Hybrid Material for Highly Efficient Energy Storage

    Using Carbon Filler to Improve High-Energy Lithium-Ion Batteries

    Cracking the Code of a Scientific Anomaly: Decades-Old Mystery of Lithium-Ion Battery Storage Solved

    Improved Advanced Energy Storage Using New Nano-Engineering Strategy

    Fast-Charging Super-Capacitor Technology Unveiled for Clean Energy Storage

    Flexible Electrolyte Sheet Breakthrough for Advanced Lithium Metal Batteries

    MIT Engineers Look Toward All-Solid Lithium Batteries

    Engineers Design Calcium-Based Multi-Element for Liquid Batteries

    2 Comments

    1. Keny Smit on June 20, 2022 3:35 am

      To be honest, I never cease to be surprised at how much there is now. I am still amazed by the NFT…

      Reply
    2. Tonygreys on June 20, 2022 3:35 am

      To be honest, I never cease to be surprised at how much there is now. I am still amazed by the NFT..

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.