Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Science»Nanopores and Permselectivity: Unveiling a New Path to Cooling
    Science

    Nanopores and Permselectivity: Unveiling a New Path to Cooling

    By Osaka UniversityDecember 17, 2023No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Nanopore Cooling by Charge-Selective Ion Transport
    Schematic illustration depicting nanopore cooling by charge-selective ion transport. Credit: 2023 Tsutsui et al., Peltier cooling for thermal management in nanofluidic devices, Device, edited

    A groundbreaking study by Japanese researchers demonstrates cooling via a nanopore, revolutionizing temperature control in microfluidic systems and enhancing understanding of cellular ion channels.

    Have you ever wondered how water boils in an electric kettle? Most people may think electricity simply heats up the metal coil inside the kettle, which then transfers the heat to the water. But electricity can do more than that. Heat can be generated when electricity makes ions in solution flow. When all the ions and surrounding molecules can move freely, this heating effect is evened out across the whole solution. Now researchers from Japan have investigated what happens when this flow is blocked in one direction.

    Cooling Through Nanopore Technology

    In a study recently published in Device, the team led by researchers from SANKEN (The Institute of Scientific and Industrial Research), Osaka University has shown that it is possible to achieve cooling by using a nanopore—a very small hole in a membrane—as a gateway that only allows certain ions through.

    In general, using electricity to drive ions in solutions draws positively charged ions and negatively charged ions in opposite directions. So, the heat energy carried by the ions travels both ways.

    Understanding Ionic Flow and Temperature Control

    If the path of the ions is obstructed by a membrane with only a nanopore to get through, then it becomes possible to control the flow. For example, if the pore surface is negatively charged, then the negative ions can interact with it rather than pass through, and only the positive ions will flow, taking their energy with them.

    “At high ion concentrations we measured an increase in temperature as the electrical power was increased,” explains study lead author Makusu Tsutsui. “However, at low concentrations the available negative ions interacted with the negatively charged nanopore wall. Therefore, only positively charged ions passed through the nanopore, and a decrease in temperature was observed.”

    Applications in Microfluidics and Cellular Biology

    The ionic refrigeration that was demonstrated could be used for cooling in microfluidic systems—setups that are used to move, mix, or investigate very small volumes of liquids. Such systems are important across many disciplines from microelectronics to nanomedicine.

    In addition, the findings could help further the understanding of ion channels, which play crucial roles in the finely balanced machinery of cells. Such insight could be key to understanding function and disease, as well as designing treatments.

    Broader Implications and Future Prospects

    “We are excited by the breadth of the potential impact of our findings,” says study senior author Tomoji Kawai. “There is considerable scope for the nanopore material to be tailored to tune the cooling. In addition, arrays of nanopores could be created to amplify the effect.”

    The list of areas that could be enhanced by the findings is indeed considerable and extends to using a temperature gradient to generate electric potential. This could be applied for temperature sensing or in blue energy harvesting.

    Reference: “Peltier cooling for thermal management in nanofluidic devices” by Makusu Tsutsui, Kazumichi Yokota, Wei Lun Hsu, Denis Garoli, Hirofumi Daiguji and Tomoji Kawai, 5 December 2023, Device.
    DOI: 10.1016/j.device.2023.100188

    Cell Membranes Microfluidics Osaka University Thermoelectric Materials
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New Technique Identifies Electricity-Producing Bacteria

    MIT Engineers Develop a New Platform for Microfluidics Using LEGO Bricks

    New Technique Improves Imaging of Atomic Structures of Dopant Atoms in Semiconductors

    Archaeologists Discover Ancient Turkic Monument Surrounded by Pillars with Inscriptions

    MIT Engineers Control and Separate Fluids Using Visible Light

    Engineers Design Microfluidic Device That Generates Passive Hydraulic Power

    Physicists Discover New High-Efficiency Thermoelectric Material

    Researchers Control Water Movement by Varying Surface Stiffness

    Looking Back to Move Thermoelectric Materials Forward

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Researchers Uncover Alarming Link Between Plastic Exposure and Autism in Male Offspring
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.