Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Biology»Unlocking the Secrets of Aging: Researchers Reveal Key to Intestinal Balance
    Biology

    Unlocking the Secrets of Aging: Researchers Reveal Key to Intestinal Balance

    By University of HelsinkiMarch 15, 2024No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Aging Time Clock Concept
    University of Helsinki researchers discovered that the capacity of intestinal stem cells to maintain cellular balance in the gut diminishes with age, and identified a new mechanism linking nutrient adaptation of these stem cells to aging. This insight could lead to methods for preserving gut function in the elderly.

    The ability of intestinal stem cells to preserve the cellular equilibrium in the gut diminishes with age. Scientists at the University of Helsinki have identified a novel interaction between the adaptation of intestinal stem cells to nutrients and the aging process. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.

    The cellular balance of the intestine is carefully regulated, and it is influenced, among other things, by nutrition: ample nutrition increases the total number of cells in the gut, whereas fasting decreases their number. The relative number of different types of cells also changes according to nutrient status.

    The questions of how the nutrition status of the gut controls stem cell division and differentiation, and how the nutrient adaptation of stem cells changes as during aging have not been comprehensively answered. Nutrient adaptation refers to the way in which nutrients guide cell function.

    Gastrointestinal Tract of the Model Organism Fruit Fly
    On the left: Model organism fruit fly (Drosophila melanogaster), gastrointestinal tract highlighted in green. On the right: Microscope images of the fruit fly intestine where cell nuclei are stained (cyan). The intestine on the top is from well-fed animal, and the intestine below from an animal kept on a restricted diet. Credit: Jaakko Mattila

    Researchers at the University of Helsinki identified a new regulatory mechanism that directs the differentiation of intestinal stem cells under a changing nutrient conditions. Cell signaling activated by nutrients increases the size of stem cells in the fruit fly intestine. The size of the stem cells, in turn, controls the cell type into which the stem cells differentiate. For stem cell function, flexible regulation of their size is essential.

    In other words, the size of the cells dynamically increases or decreases, depending on the dietary conditions. Such flexibility enables stem cells to differentiate in accordance with the prevailing nutrient status. By utilizing intestine-wide cell imaging, the researchers found that the nutrient adaptation of stem cell size and the resulting differentiation vary in different regions of the gut.

    “Our observations demonstrate that the regulation of intestinal stem cells is much more region-specific than previously understood. This may be relevant to, for example, how we think about the pathogenetic mechanisms of intestinal diseases,” says Jaakko Mattila, the corresponding author of the research article from the Faculty of Biological and Environmental Sciences, University of Helsinki.

    Intermittent fasting may benefit intestinal stem cells

    The researchers also observed that the ability of intestinal stem cells to react to a changing nutrient status is greatly reduced in older animals. They also found that, in older animals, stem cells are in a state where they are constantly large in size, which restricts their ability to differentiate. With aging, flexible regulation of stem cell size was markedly better preserved in animals that had been kept under a diet regime that is known as intermittent fasting. In the past, intermittent fasting has been shown to prolong the lifespan of animals, and the results now obtained indicate that the improved preservation of stem cell function may underlie this prolongation.

    According to the researchers, the mechanisms associated with the functioning, nutrient adaptation, and aging of human and fruit fly stem cells are fairly similar.

    “We believe that these findings have a broader significance towards understanding how to slow down the loss of tissue function caused by aging by controlling the nutrient adaptation of stem cells. However, more information is needed on the effect of the mechanism on human intestinal stem cells. Our work on the nutrient adaptation of stem cells continues,” says Professor Ville Hietakangas from the Faculty of Biological and Environmental Sciences and the Institute of Biotechnology, University of Helsinki.

    Reference: “Stem cell mTOR signaling directs region-specific cell fate decisions during intestinal nutrient adaptation” by Jaakko Mattila, Arto Viitanen, Gaia Fabris, Tetiana Strutynska, Jerome Korzelius and Ville Hietakangas, 9 February 2024, Science Advances.
    DOI: 10.1126/sciadv.adi2671

    Aging Intestines Stem Cells University of Helsinki
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Clearing Out the Trash – Stem Cells’ Battle Against Aging

    Researchers Identify a New Hallmark of Aging

    New Potential for Reversing Aging: Scientists Discover Changes in Aging Stem Cells

    Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70?

    Stem Cells Sense Density to Make Decisions

    Researchers Identify Major Obstacle to Converting Cells Back to Their Youthful State

    Scientists Use Stem Cells to Better Understand Hepatitis C

    Scientists Create Stem-Cell-Derived Neurons from Alzheimer’s Disease

    Human Stem Cells Transplanted Into Mouse Brains

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.