Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Biology»Evidence of “Hibernation-Like” State Discovered in Early Triassic Creature
    Biology

    Evidence of “Hibernation-Like” State Discovered in Early Triassic Creature

    By University of WashingtonAugust 27, 2020No Comments7 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Torpor in Lystorsaurus
    Life restoration of Lystrosaurus in a state of torpor. Credit: Crystal Shin

    Hibernation is a familiar feature on Earth today. Many animals — especially those that live close to or within polar regions — hibernate to get through the tough winter months when food is scarce, temperatures drop and days are dark.

    According to new research, this type of adaptation has a long history. In a paper published today (August 27, 2020) in the journal Communications Biology, scientists at the University of Washington and its Burke Museum of Natural History and Culture report evidence of a hibernation-like state in an animal that lived in Antarctica during the Early Triassic, some 250 million years ago.

    The creature, a member of the genus Lystrosaurus, was a distant relative of mammals. Antarctica during Lystrosaurus’ time lay largely within the Antarctic Circle, like today, and experienced extended periods without sunlight each winter.

    Pangea Map Early Triassic
    A map of Pangea during the Early Triassic, showing the locations of the Antarctic (blue) and South African (orange) Lystrosaurus populations compared in this study. Credit: Megan Whitney/Christian Sidor

    The fossils are the oldest evidence of a hibernation-like state in a vertebrate animal, and indicates that torpor — a general term for hibernation and similar states in which animals temporarily lower their metabolic rate to get through a tough season — arose in vertebrates even before mammals and dinosaurs evolved.

    “Animals that live at or near the poles have always had to cope with the more extreme environments present there,” said lead author Megan Whitney, a postdoctoral researcher at Harvard University who conducted this study as a UW doctoral student in biology. “These preliminary findings indicate that entering into a hibernation-like state is not a relatively new type of adaptation. It is an ancient one.”

    Antarctic Lystrosaurus Tusk
    This thin-section of the fossilized tusk from an Antarctic Lystrosaurus shows layers of dentine deposited in rings of growth. The tusk grew inward, with the oldest layers at the edge and the youngest layers near the center, where the pulp cavity would have been. At the top right is a close-up view of the layers, with a white bar highlighting a zone indicative of a hibernation-like state. Scale bar is 1 millimeter. Credit: Megan Whitney/Christian Sidor

    Lystrosaurus lived during a dynamic period of our planet’s history, arising just before Earth’s largest mass extinction at the end of the Permian Period — which wiped out about 70% of vertebrate species on land — and somehow surviving it. The stout, four-legged foragers lived another 5 million years into the subsequent Triassic Period and spread across swathes of Earth’s then-single continent, Pangea, which included what is now Antarctica.

    “The fact that Lystrosaurus survived the end-Permian mass extinction and had such a wide range in the early Triassic has made them a very well-studied group of animals for understanding survival and adaptation,” said co-author Christian Sidor, a UW professor of biology and curator of vertebrate paleontology at the Burke Museum.

    Paleontologists today find Lystrosaurus fossils in India, China, Russia, parts of Africa, and Antarctica. These squat, stubby, creatures — most were roughly pig-sized, but some grew 6 to 8 feet (1.8 to 2.4 meters) long — had no teeth but bore a pair of tusks in the upper jaw, which they likely employed to forage among ground vegetation and dig for roots and tubers, according to Whitney.

    South African Lystrosaurus Tusk
    In this image of the thin-section of a fossilized tusk from a South African Lystrosaurus, black arrowheads show layers of dentine deposited in layers of growth, with no signs of a hibernation-like state. Scale bar is 0.1 millimeters. Credit: Megan Whitney/Christian Sidor

    Those tusks made Whitney and Sidor’s study possible. Like elephants, Lystrosaurus tusks grew continuously throughout their lives. The cross-sections of fossilized tusks can harbor life-history information about metabolism, growth, and stress or strain. Whitney and Sidor compared cross-sections of tusks from six Antarctic Lystrosaurus to cross-sections of four Lystrosaurus from South Africa.

    Back in the Triassic, the collection sites in Antarctica were at about 72 degrees south latitude — well within the Antarctic Circle, at 66.3 degrees south. The collection sites in South Africa were more than 550 miles (865 kilometers) north during the Triassic at 58-61 degrees south latitude, far outside the Antarctic Circle.

    The tusks from the two regions showed similar growth patterns, with layers of dentine deposited in concentric circles like tree rings. But the Antarctic fossils harbored an additional feature that was rare or absent in tusks farther north: closely-spaced, thick rings, which likely indicate periods of less deposition due to prolonged stress, according to the researchers.

    Megan Whitney
    Megan Whitney, then a University of Washington doctoral student, excavating fossils in Antarctica in 2017. Whitney is now a paleontologist at Harvard University. Credit: Christian Sidor

    “The closest analog we can find to the ‘stress marks’ that we observed in Antarctic Lystrosaurus tusks are stress marks in teeth associated with hibernation in certain modern animals,” said Whitney.

    The researchers cannot definitively conclude that Lystrosaurus underwent true hibernation — which is a specific, weeks-long reduction in metabolism, body temperature, and activity. The stress could have been caused by another hibernation-like form of torpor, such as a more short-term reduction in metabolism, according to Sidor.

    Lystrosaurus in Antarctica likely needed some form of hibernation-like adaptation to cope with life near the South Pole, said Whitney. Though Earth was much warmer during the Triassic than today — and parts of Antarctica may have been forested — plants and animals below the Antarctic Circle would still experience extreme annual variations in the amount of daylight, with the sun absent for long periods in winter.

    Christian Sidor
    University of Washington paleontologist Christian Sidor excavating fossils in Antarctica in 2017. Credit: Megan Whitney

    Many other ancient vertebrates at high latitudes may also have used torpor, including hibernation, to cope with the strains of winter, Whitney said. But many famous extinct animals, including the dinosaurs that evolved and spread after Lystrosaurus died out, don’t have teeth that grow continuously.

    “To see the specific signs of stress and strain brought on by hibernation, you need to look at something that can fossilize and was growing continuously during the animal’s life,” said Sidor. “Many animals don’t have that, but luckily Lystrosaurus did.”

    If analysis of additional Antarctic and South African Lystrosaurus fossils confirms this discovery, it may also settle another debate about these ancient, hearty animals.

    “Cold-blooded animals often shut down their metabolism entirely during a tough season, but many endothermic or ‘warm-blooded’ animals that hibernate frequently reactivate their metabolism during the hibernation period,” said Whitney. “What we observed in the Antarctic Lystrosaurus tusks fits a pattern of small metabolic ‘reactivation events’ during a period of stress, which is most similar to what we see in warm-blooded hibernators today.”

    If so, this distant cousin of mammals isn’t just an example of a hearty creature. It is also a reminder that many features of life today may have been around for hundreds of millions of years before humans evolved to observe them.

    Reference: “Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica” by Megan R. Whitney and Christian A. Sidor, 27 August 2020, Communications Biology.
    DOI: 10.1038/s42003-020-01207-6

    The research was funded by the National Science Foundation.

    Evolution Paleontology Physiology Popular University of Washington
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    The Case of the False Thumb: Giant Panda’s “Amazing” Feature Developed at Least Six Million Years Ago

    New Fossils of Ancient Snake With Hind Legs Reveals Tantalizing Details of Evolution

    New Group of Ancient Flying Reptiles Identified by Paleontologists

    This 100 Million-Year-Old Snake Had Legs, but Cheekbone Provides Critical Insight Into Evolution

    Experiment Creates an Essential Component of Life – Finds Deep Sea Vents Had Ideal Conditions for Origin of Life

    Extra Finger Discovered on Aye-Aye, Making the World’s Weirdest Primate Even Weirder [Video]

    New Insight Into the Evolution of Sight From 54 Million Year-Old Fossil

    Newly Discovered Dinosaur (Mansourasaurus shahinae) Links Africa and Europe

    Scientists Replicate the Molecular Processes That Led from Dinosaur Snouts to Bird Beaks

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.