Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Biology»Jacques Cousteau Predicted Detrimental Change in Coral Reefs
    Biology

    Jacques Cousteau Predicted Detrimental Change in Coral Reefs

    By Laura Rocchio, NASA Goddard Space Flight CenterJanuary 26, 2012No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Detecting Detrimental Change in Coral Reefs
    The Pinnacle III reef in Discovery Bay on the north coast of Jamaica four days after its September 16, 1972 discovery. The pinnacle reef rises some 110 feet from the seafloor. At the time of its discovery the reef was completely covered with corals and large tree-sized sea fans. Credit: Phil Dustan

    Jacques Cousteau warned that humans were having a negative impact on coral reefs. Some three decades later, ecologist and biology professor Phil Dustan has witnessed widespread coral reef degradation and bleaching from up close. By using tools that he helped build, like a handheld spectrometer, Dustan has been monitoring and watching the reefs deteriorate at an alarming rate since the late 1970s.

    Over dinner on R.V. Calypso while anchored on the lee side of Glover’s Reef in Belize, Jacques Cousteau told Phil Dustan that he suspected humans were having a negative impact on coral reefs. Dustan—a young ocean ecologist who had worked in the lush coral reefs of the Caribbean and Sinai Peninsula—found this difficult to believe. It was December 1974.

    Landsat pixel-based map showing where the most change has been detected on Caryfort Reef
    Left: A Landsat pixel-based map showing where the most change has been detected on Caryfort Reef between 1984 and 1996. Right: The spine of elevation shows where the most change has occurred, for Carysfort this change has been correlated with coral decline. Credit: Phil Dustan

    But Cousteau was right. During the following three-plus decades, Dustan, an ocean ecologist and biology professor at the University of Charleston in South Carolina, has witnessed widespread coral reef degradation and bleaching from up close. In the late 1970s Dustan helped build a handheld spectrometer, a tool to measure light given off by the coral. Using his spectrometer, Dustan could look at light reflected and made by the different organisms that comprised the living reefs. Since then, he has watched reefs deteriorate at an alarming rate. Recently he has found that Landsat offers a way to evaluate these changes globally. Using an innovative way to map how coral reefs are changing over time, Dustan now can find ‘hotspots’ where conservation efforts should be focused to protect these delicate communities.

    A Role for Remote Sensing

    Situated in shallow clear water, most coral reefs are visible to satellites that use passive remote sensing to observe Earth’s surface. But coral reefs are complex ecosystems with coincident coral species, sand, and water all reflecting light. Dustan found that currently orbiting satellites do not offer the spatial or spectral resolution needed to distinguish between them and specifically classify coral reef composition. So instead of attempting to classify the inherently complex coral ecosystem to monitor their health, Dustan has instead started to look for change—how overall reflectance for a geographic location varies over time.

    Dustan uses a time series of Landsat data to calculate something called temporal texture¬—basically a map showing where change has occurred based on statistical analysis of reflectance information. While Dustan cannot diagnosis the type of change with temporal texture he can establish where serious changes have occurred. Coral communities have seasonal rhythms and periodicities, but larger, significant changes show up as statistical outliers in temporal texture maps and often correlate with reef decline.

    A Case Study

    Carysfort reef—named for the HMS Carysfort, an eighteenth-century British warship that ran aground on the reef in 1770—is considered the most ecologically diverse on the Florida Keys National Marine Sanctuary’s northern seaward edge, but today it is in a state of ecological collapse.

    Dustan and colleagues conducted the first quantitative field study of coral health at Carysfort in 1974. After a quarter century their studies showed that coral had declined 92 percent. The coral had succumbed to an array of stressors culminating with deadly diseases.

    92 percent loss of living coral on Carysfort between 1975 and 2000
    There was a 92 percent loss of living coral on Carysfort between 1975 and 2000. Credit: Dustan and Halas; FKNMS Coral Reef Evaluation and Monitoring Project

    Using the well-characterized Carysfort reef as his control, Dustan calculated the temporal texture for the reef using a series of 20 Landsat images collected between 1982 and 1996. The resulting temporal texture maps correlated with the known areas of significant coral loss (where coral communities have turned into algal-dominated substrates) and they correctly showed that the seaward shallow regions have had the most detrimental change.

    This novel approach to change detection is only possible because the long-term calibration of Landsat data assures that data from year-to-year is consistent. Dustin needs at least 6 to 8 Landsat images to create a reliable temporal texture map, but the more data that is available, the finer the results.

    Dustan tested this work in the U.S. because he had a robust study site and because prior to 1999 coverage of reefs outside of the U.S. was spotty. With the Landsat 7 launch in 1999 a new global data acquisition strategy was established and for the first time the planet’s coral reefs were systematically and regularly imaged, greatly increasing our knowledge of reefs. The Landsat archive enabled the completing of the first exhaustive global survey of reefs (Millennium Global Coral Reef Mapping Project, http://landsat.gsfc.nasa.gov/news/news-archive/news_0031.html). Efforts are currently underway to receive and ingest Landsat data collected and housed by international ground-receiving stations. International partners often downlink Landsat scenes of their countries that the U.S. does not, so it is very likely that historic reef images will be added the U.S. Landsat archive during this process.

    Carrying on Outside of Carysfort

    Temporal texture gives scientists an entirely new way to look at coral reefs. A worldwide study could help managers locate change ‘hotspots’ and could better inform conservation efforts.

    Ideally, after more testing, Dustan would like to see an automatic change detection system implemented to follow major worldwide reef systems. “There is no reason that a form of temporal texture monitoring could not be implemented with current satellites in orbit,” Dustan says.

    Because reefs are underwater it is difficult to grasp the extensive devastation being exacted upon them. Global temporal texture mapping could bring the ravages into focus.

    The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth’s changing landscapes for the benefit of all.

    Coral Reefs Ecology Marine Biology NASA
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Common Antibiotic Effective in Healing Coral Disease Lesions – 95% Success Rate

    New Sunscreen Is Coral-Safe and Provides Highly Effective UVB/UVA Protection

    Innovative Genetic Analysis Unlocks Clues to the Evolution and Survival of the Great Barrier Reef

    Crown-of-Thorns Starfish Eat Themselves Out of House and Home

    The Great Barrier Reef Has Lost Half Its Corals – Massive Declines in Just 3 Decades

    Scientists Surprised by Growth Rates in World’s Deepest Photosynthetic Corals

    Rare Species of Animals and Plants Organize in Ghettos to Survive

    New Hope for Coral Reef Restoration From Playing Sounds of Healthy Reefs on Loudspeakers

    Biologists Explore the Effect of Coral Restoration on Caribbean Reef Fish Communities

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.