Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»NASA’s Perseverance Rover Hits the Mark – “This Is the Kind of Rock We Had Hoped To Find”
    Space

    NASA’s Perseverance Rover Hits the Mark – “This Is the Kind of Rock We Had Hoped To Find”

    By Jet Propulsion LaboratoryApril 9, 20242 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    NASA Perseverance Rover Bunsen Peak Sample Core
    The 21st rock core captured by NASA’s Perseverance has a composition that would make it good at trapping and preserving signs of microbial life, if any was once present. The sample – shown being taken here – was cored from “Bunsen Peak” on March 11, the 1,088th Martian day, or sol, of the mission. Credit: NASA/JPL-Caltech

    The 24th sample taken by the six-wheeled scientist offers new clues about Jezero Crater and the lake it may have once held.

    Analysis by instruments aboard NASA’s Perseverance Mars rover indicate that the latest rock core taken by the rover was awash in water for an extended period of time in the distant past, perhaps as part of an ancient Martian beach. Collected on March 11, the sample is the rover’s 24th – a tally that includes 21 sample tubes filled with rock cores, two filled with regolith (broken rock and dust), and one with Martian atmosphere.

    “To put it simply, this is the kind of rock we had hoped to find when we decided to investigate Jezero Crater,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena, California. “Nearly all the minerals in the rock we just sampled were made in water; on Earth, water-deposited minerals are often good at trapping and preserving ancient organic material and biosignatures. The rock can even tell us about Mars climate conditions that were present when it was formed.”

    The presence of these specific minerals is considered promising for preserving a rich record of an ancient habitable environment on Mars. Such collections of minerals are important for guiding scientists to the most valuable samples for eventual return to Earth with the Mars Sample Return campaign.


    Meet the 24th Martian sample collected by NASA’s Mars Perseverance rover – “Comet Geyser,” a sample taken from a region of Jezero Crater that is especially rich in carbonate, a mineral linked to habitability. Credit: NASA/JPL-Caltech

    Edge of the Crater’s Rim

    Nicknamed “Bunsen Peak” for the Yellowstone National Park landmark, the rock – about 5.6 feet wide and 3.3 feet high (1.7 meters by 1 meter) – intrigued Perseverance scientists because the outcrop stands tall amid the surrounding terrain and has an interesting texture on one of its faces. They were also interested in Bunsen Peak’s vertical rockface, which offers a nice cross-section of the rock and, because it’s not flat-lying, is less dusty and therefore easier for science instruments to investigate.

    Before taking the sample, Perseverance scanned the rock using the rover’s SuperCam spectrometers and the X-ray spectrometer PIXL, short for Planetary Instrument for X-ray Lithochemistry. Then the rover used the rotor on the end of its robotic arm to grind (or abrade) a portion of the surface and scanned the rock again. The results: Bunsen Peak looks to be composed of about 75% carbonate grains cemented together by almost pure silica.

    Perseverance’s View of “Bunsen Peak”
    This mosaic shows a rock called “Bunsen Peak” where NASA’s Perseverance Mars rover extracted its 21st rock core and abraded a circular patch to investigate the rock’s composition. Credit: NASA/JPL-Caltech/ASU/MSSS

    “The silica and parts of the carbonate appear microcrystalline, which makes them extremely good at trapping and preserving signs of microbial life that might have once lived in this environment,” said Sandra Siljeström, a Perseverance scientist from the Research Institutes of Sweden (RISE) in Stockholm. “That makes this sample great for biosignature studies if returned to Earth. Additionally, the sample might be one of the older cores collected so far by Perseverance, and that is important because Mars was at its most habitable early in its history.” A potential biosignature is a substance or structure that could be evidence of past life but may also have been produced without the presence of life.

    The Bunsen Peak sample is the third that Perseverance has collected while exploring the “Margin Unit,” a geologic area that hugs the inner edge of Jezero Crater’s rim.

    Perseverance’s “Bunsen Peak” Sample
    Perseverance’s CacheCam captured this image of the rover’s latest cored sample – taken from an intriguing rock called “Bunsen Peak” – on March 11. Credit: NASA/JPL-Caltech

    “We’re still exploring the margin and gathering data, but results so far may support our hypothesis that the rocks here formed along the shores of an ancient lake,” said Briony Horgan, a Perseverance scientist from Purdue University, in West Lafayette, Indiana. “The science team is also considering other ideas for the origin of the Margin Unit, as there are other ways to form carbonate and silica. But no matter how this rock formed, it is really exciting to get a sample.”

    The rover is working its way toward the westernmost portion of the Margin Unit. At the base of Jezero Crater’s rim, a location nicknamed “Bright Angel” is of interest to the science team because it may offer the first encounter with the much older rocks that make up the crater rim. Once it’s done exploring Bright Angel, Perseverance will begin an ascent of several months to the rim’s top.

    More About the Mission

    A key objective for Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

    Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

    The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

    NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

    Astrobiology JPL Mars Mars 2020 Perseverance Rover NASA Popular
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Potential Evidence of Life Discovered on Mars by NASA’s Perseverance Rover

    Perseverance Triumphs: How SHERLOC Was Brought Back to Life on Mars

    Life on Mars? NASA’s Perseverance Rover Finds Evidence of Diverse Organic Compounds

    Life on Mars? Latest Intriguing Organic Findings by NASA’s Perseverance Rover

    Signs of Martian Life? NASA’s Mars Perseverance Rover Begins the Hunt!

    NASA Finds Organic Salts Are Likely Present on Mars – Remnants of Ancient Martian Microbial Life?

    Searching for Signs of Life on Mars: Perseverance’s Robotic Arm Starts Conducting Science

    NASA’s Perseverance Rover Will Peer Beneath Mars’ Surface to Search for Signs of Life

    NASA’s New Mars Rover Will Use X-Rays to Hunt for Chemical Fingerprints Left by Ancient Microbes

    2 Comments

    1. Clyde Spencer on April 9, 2024 8:39 am

      Moderator: Note that the caption on the first photo’ refers to the “21st” sample, while the text consistently refers to the 24th sample.

      Reply
      • Mike Palin on April 10, 2024 1:28 pm

        21st rock core sample, 24th overall sample: “Collected on March 11, the sample is the rover’s 24th – a tally that includes 21 sample tubes filled with rock cores, two filled with regolith (broken rock and dust), and one with Martian atmosphere.”

        Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.