Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Using Extremely Fast Lasers to Develop Perovskite Solar Cells That Can Harvest More Electricity
    Physics

    Using Extremely Fast Lasers to Develop Perovskite Solar Cells That Can Harvest More Electricity

    By Nanyang Technological UniversityDecember 21, 2019No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Femtosecond Lasers
    Researchers used femtosecond lasers to analyze a perovskite solar cell. Credit: NTU Singapore

    Scientists from Nanyang Technological University, Singapore (NTU Singapore) in a collaboration with the University of Groningen (UG) in the Netherlands, have developed a method to analyze which pairs of materials in next-generation perovskite solar cells will harvest the most energy.

    In a paper published in Science Advances, physicists Professor Sum Tze Chien from NTU and Professor Maxim Pshenichnikov from UG used extremely fast lasers to observe how an energy barrier forms when perovskite is joined with a material that extracts the electrical charges to make a solar cell.

    Conventionally, a solar cell absorbs sunlight and converts it to an electrical charge. During this process, the light particles have more energy than needed to generate the electrical charges in the solar cells.

    This excess energy gives rise to what are called “hot” charges, which lose their excess energy very fast as heat (within one picosecond), leaving only “cold” charges available for electrical power generation.

    This energy loss is why conventional solar cells have a theoretical limit of 33 percent for power conversion efficiency. The best perovskite solar cells so far have exhibited 25 percent efficiency, almost on par with the best-performing silicon solar cells.

    Scientists believe that if “hot” charges could be extracted fast enough, then together with the harvested “cold” charges, it could lead to a “hot carrier” solar cell with a theoretical efficiency of up to 66 percent.

    NTU Prof Sum Tze Chien, Dr David Giovanni, Dr Lim Swee Sien and Mr Lim Jia Wei Melvin
    (From left) NTU Prof Sum Tze Chien, Dr. David Giovanni, Dr. Lim Swee Sien, and Mr. Lim Jia Wei Melvin, used extremely fast lasers to observe how an energy barrier forms when perovskite is joined with a material. Credit: NTU Singapore

    The key to extracting these hot charges quickly enough lies in the selection of the correct ‘extraction’ material to bond with the perovskite. Professor Sum’s team has now devised a way to measure which are the best extraction materials.

    Professor Sum, the Associate Chair (Research) at NTU’s School of Physical and Mathematical Sciences, said “Our latest findings show how ‘hot’ these charges have to be, in order to cross over the energy barrier without being wasted as heat. This highlights the need for a better pairing of ‘extraction’ materials with perovskites if we want to lower this energy barrier for more efficient solar cells.”

    Perovskite solar cells’ primary advantage over silicon solar cells is that they are cheap and easy to manufacture using common chemistry laboratory supplies and do not need silicon’s costly and energy-intensive manufacturing processes.

    Maxim Pshenichnikov, NTU Singapore
    Professor Maxim Pshenichnikov, University of Groningen (UG), Netherlands, together with scientists from NTU Singapore, developed a method to analyze which pairs of materials in next-generation perovskite solar cells will harvest the most energy. Credit: NTU Singapore

    Professor Sum and his collaborators previously published in Science their discovery that “hot” charges in perovskites lose their excess energies more slowly than in other semiconductors. The team subsequently slowed this energy loss further using nano-sized perovskites, making it easier to extract the hot charges as electricity.

    In their latest experiments, the NTU and UG scientists ‘watched’ the solar cells at work using femtosecond pulsed lasers that can measure processes that occur roughly 100 billion times faster than a camera flash. The scientists studied the behavior of the “hot” charges that are generated and how they moved through the perovskite into the extractor material without losing their excess energy as heat.

    Professor Pshenichnikov said, “Such high-efficiency solar cells could mean the possibility of increasing the energy supply from solar panels without the need for more surface area.”

    Giving an independent comment on the research, Dr. Henk Bolink from the Institut de Ciència Molecular (ICMol) of the Cientific Parc of the University of Valencia, said besides a suitable light-absorbing layer, solar cells also need charge extraction layers that selectively extract either electrons or holes to the two terminals of the cell.

    “It is currently unclear what the charge extraction interface composition/property should be, to allow for the extraction of both the “hot” and “cold” charges,” said Dr. Bolink, who was not involved in the study.

    “In their recent work, Professor Sum and Professor Pshenichnikov shed light on this crucial puzzle by demonstrating a method that allows for the identification of the suitability of these charge extraction layers.”

    NTU and UG Dual Ph.D. Program

    This research finding is a result of new collaborative agreements between NTU and UG, which includes the offering of a dual Ph.D. program.

    Under this dual Ph.D. program, doctoral candidates will be trained in both NTU and UG and spend at least a year in both universities.

    This gives opportunities for the Ph.D. students to participate in ground-breaking collaborative research and to learn from professors from both universities, and gain two Ph.D. degrees.

    This study, led by Professor Sum, took two years to complete with a joint team of ten researchers.

    The team is now looking at discovering better and more efficient extractor materials, which could work to increase the performance of perovskite solar cells.

    Read Harvesting Hot Electrons Without Tricks to Increase Solar Panel Efficiency for more on this research.

    Reference: “Hot carrier extraction in CH3NH3PbI3 unveiled by pump-push-probe spectroscopy” by Swee Sien Lim, David Giovanni, Qiannan Zhang, Ankur Solanki, Nur Fadilah Jamaludin, Jia Wei Melvin Lim, Nripan Mathews, Subodh Mhaisalkar, Maxim S. Pshenichnikov and Tze Chien Sum, 15 November 2019, Science Advances.
    DOI: 10.1126/sciadv.aax3620

    Green Energy Materials Science Nanyang Technological University Optics Perovskite Solar Cell Popular Solar Cells
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Breakthrough Self-Assembly Innovation Enables Cheaper Solar Energy Production

    Using Light to Put a Twist on Electrons – Inducing Asymmetrical Patterns in Exotic Materials

    Scientists Make High-Performance Hybrid Perovskite Solar Cells Safer

    New Flexible Transparent Solar Cells Could Be Used in Buildings, Vehicles and Portable Electronics

    “Big Surprise” Discovery Increases Perovskite Solar Cell Efficiency

    Harvesting Hot Electrons Without Tricks Could Increase Solar Panel Efficiency

    Aspects of High Efficiency Perovskite Solar Cells Uncovered With Light 10 Billion Times Brighter Than the Sun

    Important Breakthrough in Perovskite Solar Cells

    Solar Cell Performance Boosted by Biological Material That Mimics Photosynthesis

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.