Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»The Experimental Design of a Space-Time Crystal
    Physics

    The Experimental Design of a Space-Time Crystal

    By Lynn Yarris, Lawrence Berkeley National LaboratorySeptember 28, 2012No Comments7 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    space-time crystal
    Imagine a clock that will keep perfect time forever or a device that opens new dimensions into quantum phenomena such as emergence and entanglement.

    An international team of scientists has come up with the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge.

    Imagine a clock that will keep perfect time forever, even after the heat-death of the universe. This is the “wow” factor behind a device known as a “space-time crystal,” a four-dimensional crystal that has periodic structure in time as well as space. However, there are also practical and important scientific reasons for constructing a space-time crystal. With such a 4D crystal, scientists would have a new and more effective means by which to study how complex physical properties and behaviors emerge from the collective interactions of large numbers of individual particles, the so-called many-body problem of physics. A space-time crystal could also be used to study phenomena in the quantum world, such as entanglement, in which an action on one particle impacts another particle even if the two particles are separated by vast distances.

    A space-time crystal, however, has only existed as a concept in the minds of theoretical scientists with no serious idea as to how to actually build one – until now. An international team of scientists led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge.

    “The electric field of the ion trap holds charged particles in place and Coulomb repulsion causes them to spontaneously form a spatial ring crystal,” says Xiang Zhang, a faculty scientist with Berkeley Lab’s Materials Sciences Division who led this research. “Under the application of a weak static magnetic field, this ring-shaped ion crystal will begin a rotation that will never stop. The persistent rotation of trapped ions produces temporal order, leading to the formation of a space-time crystal at the lowest quantum energy state.”

    a clock that will keep perfect time forever
    This proposed space-time crystal shows (a) periodic structures in both space and time with (b) ultracold ions rotating in one direction even at the lowest energy state. Credit: Courtesy of Xiang Zhang group

    Because the space-time crystal is already at its lowest quantum energy state, its temporal order – or timekeeping – will theoretically persist even after the rest of our universe reaches entropy, thermodynamic equilibrium or “heat-death.”

    Zhang, who holds the Ernest S. Kuh Endowed Chair Professor of Mechanical Engineering at the University of California (UC) Berkeley, where he also directs the Nano-scale Science and Engineering Center, is the corresponding author of a paper describing this work in Physical Review Letters (PRL). The paper is titled “Space-time crystals of trapped ions.” Co-authoring this paper were Tongcang Li, Zhe-Xuan Gong, Zhang-Qi Yin, Haitao Quan, Xiaobo Yin, Peng Zhang and Luming Duan.

    The concept of a crystal that has discrete order in time was proposed earlier this year by Frank Wilczek, the Nobel-prize winning physicist at the Massachusetts Institute of Technology. While Wilczek mathematically proved that a time crystal can exist, how to physically realize such a time crystal was unclear. Zhang and his group, who have been working on issues with temporal order in a different system since September 2011, have come up with an experimental design to build a crystal that is discrete both in space and time – a space-time crystal.

    Traditional crystals are 3D solid structures made up of atoms or molecules bonded together in an orderly and repeating pattern. Common examples are ice, salt and snowflakes. Crystallization takes place when heat is removed from a molecular system until it reaches its lower energy state. At a certain point of lower energy, continuous spatial symmetry breaks down and the crystal assumes discrete symmetry, meaning that instead of the structure being the same in all directions, it is the same in only a few directions.

    “Great progress has been made over the last few decades in exploring the exciting physics of low-dimensional crystalline materials such as two-dimensional graphene, one-dimensional nanotubes, and zero-dimensional buckyballs,” says Tongcang Li, lead author of the PRL paper and a post-doc in Zhang’s research group. “The idea of creating a crystal with dimensions higher than that of conventional 3D crystals is an important conceptual breakthrough in physics and it is very exciting for us to be the first to devise a way to realize a space-time crystal.”

    a way to make a four-dimensional space-time crystal
    Xiang Zhang (seated) and Tongcang Li have proposed a way to make a four-dimensional space-time crystal, a device that could be used to study the many-body problem of physics and other quantum phenomena. Credit: Photo by Roy Kaltschmidt, Berkeley Lab

    Just as a 3D crystal is configured at the lowest quantum energy state when continuous spatial symmetry is broken into discrete symmetry, so too is symmetry breaking expected to configure the temporal component of the space-time crystal. Under the scheme devised by Zhang and Li and their colleagues, a spatial ring of trapped ions in persistent rotation will periodically reproduce itself in time, forming a temporal analog of an ordinary spatial crystal. With a periodic structure in both space and time, the result is a space-time crystal.

    “While a space-time crystal looks like a perpetual motion machine and may seem implausible at first glance,” Li says, “keep in mind that a superconductor or even a normal metal ring can support persistent electron currents in its quantum ground state under the right conditions. Of course, electrons in a metal lack spatial order and therefore can’t be used to make a space-time crystal.”

    Li is quick to point out that their proposed space-time crystal is not a perpetual motion machine because being at the lowest quantum energy state, there is no energy output. However, there are a great many scientific studies for which a space-time crystal would be invaluable.

    “The space-time crystal would be a many-body system in and of itself,” Li says. “As such, it could provide us with a new way to explore classic many-body questions physics question. For example, how does a space-time crystal emerge? How does time translation symmetry break? What are the quasi-particles in space-time crystals? What are the effects of defects on space-time crystals? Studying such questions will significantly advance our understanding of nature.”

    Peng Zhang, another co-author and member of Zhang’s research group, notes that a space-time crystal might also be used to store and transfer quantum information across different rotational states in both space and time. Space-time crystals may also find analogs in other physical systems beyond trapped ions.

    “These analogs could open doors to fundamentally new technologies and devices for variety of applications,” he says.

    Xiang Zhang believes that it might even be possible now to make a space-time crystal using their scheme and state-of-the-art ion traps. He and his group are actively seeking collaborators with the proper ion-trapping facilities and expertise.

    “The main challenge will be to cool an ion ring to its ground state,” Xiang Zhang says. “This can be overcome in the near future with the development of ion trap technologies. As there has never been a space-time crystal before, most of its properties will be unknown and we will have to study them. Such studies should deepen our understandings of phase transitions and symmetry breaking.”

    Reference: “Space-Time Crystals of Trapped Ions” by Tongcang Li, Zhe-Xuan Gong, Zhang-Qi Yin, H. T. Quan, Xiaobo Yin, Peng Zhang, L.-M. Duan and Xiang Zhang, 15 October 2012, Physical Review Letters.
    DOI: 10.1103/PhysRevLett.109.163001

    This research was supported primarily by the Miller Professorship and Ernest S. Kuh endowed Chair at UC Berkeley, and by the National Science Foundations’ Nanoscale Science and Engineering Center.

    Lawrence Berkeley National Laboratory Materials Science Nanoscience Popular Quantum Mechanics Quantum Physics
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Quantum Physicists Find Paradoxical Material a Mashup of Three Different Phases at Once – “This Is Uncharted Territory”

    Researchers Improve Spin Coherence Time of Nitrogen Vacancy Centers

    Atomic Collapse State Observed on Graphene

    Experiment Using Photons Could Detect Quantum-Scale Black Holes

    Photons Traverse Optical Obstacles as Both a Wave and Particle Simultaneously

    Path to Magnetic Vortex RAM Might be More Difficult Than Previously Assumed

    “Schrödinger’s Hat” Conceals Matter Waves Inside an Invisible Container

    Simulating Quantum Walks in Two Dimensions

    Evidence of Elusive Majorana Fermions Raises Possibilities for Quantum Computing

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.