Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Earth»Massive Extinction of Species in the Late Cretaceous Was Not Caused by Extreme Volcanism
    Earth

    Massive Extinction of Species in the Late Cretaceous Was Not Caused by Extreme Volcanism

    By University of BarcelonaSeptember 28, 2021No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Zumaia Cliffs
    The Zumaia cliffs are characterized by an exceptional section of strata that reveals the geological history of the Earth in the period of 115-50 million years ago (Ma). Credit: University of Barcelona / IUCA – University of Zaragoza

    A study published in the journal Geology rules out that extreme volcanic episodes had any influence on the massive extinction of species in the late Cretaceous. The results confirm the hypothesis that it was a giant meteorite impact that caused the great biological crisis that ended up with the non-avian dinosaur lineages and other marine and terrestrial organisms 66 million years ago.

    The study was carried out by the researcher Sietske Batenburg, from the Faculty of Earth Sciences of the University of Barcelona, and the experts Vicente Gilabert, Ignacio Arenillas and José Antonio Arz, from the University Research Institute on Environmental Sciences of Aragon (IUCA-University of Zaragoza).

    K/Pg boundary: the great extinction of the Cretaceous in Zumaia coasts

    The scenario of this study was the Zumaia cliffs (Basque Country), which have an exceptional section of strata that reveals the geological history of the Earth in the period of 115-50 million years ago (Ma). In this environment, the team analyzed sediments and rocks that are rich in microfossils that were deposited between 66.4 and 65.4 Ma, a time interval that includes the known Cretaceous/Paleogene boundary (K/Pg). Dated in 66 Ma, the K/Pg boundary divides the Mesozoic and Cenozoic eras and it coincides with one of the five large extinctions of the planet.

    This study analyzed the climate changes that occurred just before and after the massive extinction marked by the K/Pg boundary, as well as its potential relation to this large biological crisis. For the first time, researchers examined whether this climate change coincides on the time scale with its potential causes: the Deccan massive volcanism (India) — one of the most violent volcanic episodes in the geological history of the planet — and the orbital variations of the Earth.

    Sietske Batenburg and Vicente Gilabert
    The experts Sietske Batenburg, from the Faculty of Earth Sciences of the University of Barcelona, and ¡Vicente Gilabert, from the University Research Institute on Environmental Sciences of Aragon (IUCA-University of Zaragoza). Credit: University of Barcelona / IUCA – University of Zaragoza

    “The particularity of the Zumaia outcrops lies in that two types of sediments accumulated there — some richer in clay and others richer in carbonate — that we can now identify as strata or marl and limestone that alternate with each other to form rhythms,” notes the researcher Sietske Batenburg, from the Department of Earth and Ocean Dynamics of the UB. “This strong rhythmicity in sedimentation is related to cyclical variations in the orientation and inclination of the Earth axis in the rotation movement, as well as in the translational movement around the Sun”.

    These astronomic configurations — the known Milankovitch cycles, which repeat every 405,000, 100,000, 41,000, and 21,000 years — regulate the amount of solar radiation they receive, modulate the global temperature of our planet and condition the type of sediment that reaches the oceans. “Thanks to these periodicities identified in the Zumaia sediments, we have been able to determine the most precise dating of the climatic episodes that took place around the time when the last dinosaurs lived,” says PhD student Vicente Gilabert, from the Department of Earth Sciences at UZ, who will present his thesis defense by the end of this year.

    Planktonic foraminifera: revealing the climate of the past

    Carbon-13 isotopic analysis on the rocks in combination with the study of planktonic foraminifera — microfossils used as high-precision biostratigraphic indicators — has made it possible to reconstruct the paleoclimate and chronology of that time in the Zumaia sediments. More than 90% of the Cretaceous planktonic foraminiferal species from Zumaia became extinct 66 Ma ago, coinciding with a big disruption in the carbon cycle and an accumulation of impact glass spherules originating from the asteroid that hit Chicxulub, in the Yucatan Peninsula (Mexico).

    In addition, the conclusions of the study reveal the existence of three intense climatic warming events — known as hyperthermal events — that are not related to the Chicxulub impact. The first, known as LMWE and prior to the K/Pg boundary, has been dated to between 66.25 and 66.10 Ma. The other two events, after the mass extinction, are called Dan-C2 (between 65.8 and 65.7 Ma) and LC29n (between 65.48 and 65.41 Ma).

    In the last decade, there has been intense debate over whether the hyperthermal events mentioned above were caused by an increased Deccan volcanic activity, which emitted large amounts of gases into the atmosphere. “Our results indicate that all these events are in sync with extreme orbital configurations of the Earth known as eccentricity maxima. Only the LMWE, which produced an estimated global warming of 2-5°C (3.6-9°F), appears to be temporally related to a Deccan eruptive episode, suggesting that it was caused by a combination of the effects of volcanism and the latest Cretaceous eccentricity maximum”, the experts add.

    Earth’s orbital variations around the Sun

    The global climate changes that occurred in the late Cretaceous and early Palaeogene — between 250,000 years before and 200,000 years after the K/Pg boundary — were due to eccentricity maxima of the Earth’s orbit around the Sun.

    However, the orbital eccentricity that influenced climate changes before and after the K/Pg boundary is not related to the late Cretaceous mass extinction of species. The climatic changes caused by the eccentricity maxima and augmented by the Deccan volcanism occurred gradually at a scale of hundreds of thousands of years.

    “These data would confirm that the extinction was caused by something completely external to the Earth system: the impact of an asteroid that occurred 100,000 years after this late Cretaceous climate change (the LMWE),” the research team says. “Furthermore, the last 100,000 years before the K/Pg boundary are characterized by high environmental stability with no obvious perturbations, and the large mass extinction of species occurred instantaneously on the geological timescale,” they conclude.

    Reference: “Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain” by Vicente Gilabert, Sietske J. Batenburg, Ignacio Arenillas and José A. Arz, 30 August 2021, Geology.
    DOI: 10.1130/G49214.1

    Climate Change Geology Geoscience Paleoclimatology University of Barcelona Volcano
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    The Arctic Ocean’s Deep Past Provides Clues to Its Imminent Future Under a Global Warming Regime

    Volcanoes Act as a Safety Valve for Earth’s Long-Term Climate – Stabilizing Surface Temperatures

    Arrival of Land Plants 400 Million Years Ago Changed Earth’s Climate Control System

    New Geochemical Testing Confirms Cause of End-Permian Mass Extinction Event That Wiped Out Most Life on Earth

    Vast Portions of Today’s Sahara Desert Were Green Thousands of Years Ago

    There’s Lots of Water in the Most Explosive Volcano in the World

    Centuries Old Climate Records Reconstructed From a 600-Year-Old Marine Sponge

    Sediment Discovered in Texas Cave Upends Meteorite Explanation for Global Cooling

    Global Cooling 13,000 Years Ago Was Caused by Volcanic Eruptions, Not Meteors

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.