Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Health»Cambridge’s Flexible Implants Promise New Hope for Paralysis Patients
    Health

    Cambridge’s Flexible Implants Promise New Hope for Paralysis Patients

    By University of CambridgeMay 8, 2024No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Spinal Cord Art Concept
    Cambridge researchers have introduced a groundbreaking device capable of wrapping around the spinal cord to enable detailed monitoring and stimulation, potentially eliminating the need for risky brain surgeries in spinal injury treatments. Credit: SciTechDaily.com

    A tiny, flexible electronic device that wraps around the spinal cord could represent a new approach to the treatment of spinal injuries, which can cause profound disability and paralysis.

    A team of engineers, neuroscientists, and surgeons from the University of Cambridge developed the devices and used them to record the nerve signals going back and forth between the brain and the spinal cord. Unlike current approaches, the Cambridge devices can record 360-degree information, giving a complete picture of spinal cord activity.

    Enhancing Spinal Injury Treatment

    Tests in live animal and human cadaver models showed the devices could also stimulate limb movement and bypass complete spinal cord injuries where communication between the brain and spinal cord had been completely interrupted.

    Most current approaches to treating spinal injuries involve both piercing the spinal cord with electrodes and placing implants in the brain, which are both high-risk surgeries. The Cambridge-developed devices could lead to treatments for spinal injuries without the need for brain surgery, which would be far safer for patients.

    Wraparound Spinal Cord Implants
    A novel device from the University of Cambridge offers a safer approach to spinal injury treatment by wrapping around the spinal cord for comprehensive monitoring, potentially reducing the need for brain surgery. Credit: University of Cambridge

    Benefits and Long-term Potential

    While such treatments are still at least several years away, the researchers say the devices could be useful in the near-term for monitoring spinal cord activity during surgery. Better understanding of the spinal cord, which is difficult to study, could lead to improved treatments for a range of conditions, including chronic pain, inflammation, and hypertension. The results are reported today (May 8) in the journal Science Advances.

    “The spinal cord is like a highway, carrying information in the form of nerve impulses to and from the brain,” said Professor George Malliaras from the Department of Engineering, who co-led the research. “Damage to the spinal cord causes that traffic to be interrupted, resulting in profound disability, including irreversible loss of sensory and motor functions.”

    The ability to monitor signals going to and from the spinal cord could dramatically aid in the development of treatments for spinal injuries, and could also be useful in the nearer term for better monitoring of the spinal cord during surgery.

    Advanced Monitoring Technologies

    “Most technologies for monitoring or stimulating the spinal cord only interact with motor neurons along the back, or dorsal, part of the spinal cord,” said Dr. Damiano Barone from the Department of Clinical Neurosciences, who co-led the research. “These approaches can only reach between 20 and 30 percent of the spine, so you’re getting an incomplete picture.”

    By taking their inspiration from microelectronics, the researchers developed a way to gain information from the whole spine, by wrapping very thin, high-resolution implants around the spinal cord’s circumference. This is the first time that safe 360-degree recording of the spinal cord has been possible – earlier approaches for 360-degree monitoring use electrodes that pierce the spine, which can cause spinal injury.

    The Cambridge-developed biocompatible devices – just a few millionths of a meter thick – are made using advanced photolithography and thin film deposition techniques, and require minimal power to function.

    The devices intercept the signals traveling on the axons, or nerve fibers, of the spinal cord, allowing the signals to be recorded. The thinness of the devices means they can record the signals without causing any damage to the nerves, since they do not penetrate the spinal cord itself.

    “It was a difficult process, because we haven’t made spinal implants in this way before, and it wasn’t clear that we could safely and successfully place them around the spine,” said Malliaras. “But because of recent advances in both engineering and neurosurgery, the planets have aligned and we’ve made major progress in this important area.”

    Implementation and Future Prospects

    The devices were implanted using an adaptation to routine surgical procedure so they could be slid under the spinal cord without damaging it. In tests using rat models, the researchers successfully used the devices to stimulate limb movement. The devices showed very low latency – that is, their reaction time was close to human reflexive movement. Further tests in human cadaver models showed that the devices can be successfully placed in humans.

    The researchers say their approach could change how spinal injuries are treated in the future. Current attempts to treat spinal injuries involve both brain and spinal implants, but the Cambridge researchers say the brain implants may not be necessary.

    “If someone has a spinal injury, their brain is fine, but it’s the connection that’s been interrupted,” said Barone. “As a surgeon, you want to go where the problem is, so adding brain surgery on top of spinal surgery just increases the risk to the patient. We can collect all the information we need from the spinal cord in a far less invasive way, so this would be a much safer approach for treating spinal injuries.”

    While a treatment for spinal injuries is still years away, in the nearer term, the devices could be useful for researchers and surgeons to learn more about this vital, but understudied, part of human anatomy in a non-invasive way. The Cambridge researchers are currently planning to use the devices to monitor nerve activity in the spinal cord during surgery.

    “It’s been almost impossible to study the whole of the spinal cord directly in a human, because it’s so delicate and complex,” said Barone. “Monitoring during surgery will help us to understand the spinal cord better without damaging it, which in turn will help us develop better therapies for conditions like chronic pain, hypertension, or inflammation. This approach shows enormous potential for helping patients.”

    Reference: “Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord” by Ben J. Woodington, Jiang Lei, Alejandro Carnicer-Lombarte, Amparo Güemes-González, Tobias E. Naegele, Sam Hilton, Salim El-Hadwe, Rikin A. Trivedi, George G. Malliaras and Damiano G. Barone, 8 May 2024, Science Advances.
    DOI: 10.1126/sciadv.adl1230

    The research was supported in part by the Royal College of Surgeons, the Academy of Medical Sciences, Health Education England, the National Institute for Health Research, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

    Biomedical Engineering Biotechnology Prosthetics Spinal Cord University of Cambridge
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Revolutionizing Amputee Care: Spinal Cord Stimulation Alleviates Pain and Enhances Balance

    ‘Smart Toilet’ Automatically Monitors Your Output for Signs of Disease

    Ultra-Sensitive Cancer DNA Detector Created With Crumpled Graphene

    MIT Bionic ‘Heart’ Made of Heart Tissue and a Robotic Pumping System Beats Like the Real Thing

    Millions Have Problems Swallowing – This New Wearable Device Could Help

    New Biomaterial Developed That Could Be a Treatment for Spinal Cord Injuries

    Soft, Flexible Artificial Skin Produces a Realistic Sense of Touch [Video]

    Bioengineers Develop Hybrid Hydrogel System to Help Heal Bones

    Injectable, Spontaneously Assembling Vaccines Could Fight Cancer

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.