Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Biology»Small but Significant: Differences Between Brains of Primates Revealed – Humans, Apes and Monkeys
    Biology

    Small but Significant: Differences Between Brains of Primates Revealed – Humans, Apes and Monkeys

    By Emily LeClerc, University of Wisconsin-MadisonNovember 13, 2022No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Human Brain Cross-Section Model
    A new study investigated the differences and similarities of cells in the prefrontal cortex — the frontmost region of the brain, an area that plays a central role in higher cognitive functions — between humans and non-human primates such as chimpanzees, Rhesus macaques, and marmosets.

    A new study reveals that the brains of humans and non-human primates may be remarkably similar, despite the very distinct physical differences between them. And yet, the smallest changes may make big differences in developmental and psychiatric disorders.

    Understanding the molecular differences that make the human brain distinct can help scientists investigate disruptions in its development. A new study investigates the differences and similarities of cells in the prefrontal cortex — the frontmost region of the brain, an area that plays a central role in higher cognitive functions — between humans and non-human primates such as chimpanzees, Rhesus macaques, and marmosets. Published recently in the journal Science, the study was conducted by a team of researchers including University of Wisconsin–Madison neuroscience professor Andre Sousa.

    The cellular differences between these species may illuminate steps in their evolution and how those differences can be implicated in disorders, such as autism and intellectual disabilities, seen in humans. Sousa, who studies the developmental biology of the brain at UW–Madison’s Waisman Center, decided to start by studying and categorizing the cells in the prefrontal cortex in partnership with the Yale University lab where he worked as a postdoctoral researcher.

    Human Chimpanzee Macaque Marmoset Brains
    Researchers analyzed genetic material from cells in the prefrontal cortex (the area shaded in each brain) from four closely-related primates to characterize subtle differences in cell type and genetics. University of Wisconsin-Madison

    “We are profiling the dorsolateral prefrontal cortex because it is particularly interesting. This cortical area only exists in primates. It doesn’t exist in other species,” Sousa says. “It has been associated with several relevant functions in terms of high cognition, like working memory. It has also been implicated in several neuropsychiatric disorders. So, we decided to do this study to understand what is unique about humans in this brain region.”

    Sousa and his lab collected genetic information from more than 600,000 prefrontal cortex cells from tissue samples from humans, chimpanzees, macaques and marmosets. They analyzed that data to categorize the cells into types and determine the differences in similar cells across species. Unsurprisingly, the vast majority of the cells were fairly comparable.

    “Most of the cells are actually very similar because these species are relatively close evolutionarily,” Sousa says.

    Andre Sousa
    Andre Sousa. Credit: Photo by Andy Manis

    Sousa and his collaborators found five cell types in the prefrontal cortex that were not present in all four of the species. They also found differences in the abundances of certain cell types as well as diversity among similar cell populations across species. When comparing a chimpanzee to a human the differences seem huge — from their physical appearances down to the capabilities of their brains. But at the cellular and genetic level, at least in the prefrontal cortex, the similarities are many and the dissimilarities sparing.

    “Our lab really wants to know what is unique about the human brain. Obviously from this study and our previous work, most of it is actually the same, at least among primates,” Sousa says.

    The slight differences the researchers found may be the beginning of determining some of those unique factors, and that information could lead to revelations about development and developmental disorders at a molecular level.

    “We want to know what happened after the evolutionary split between humans and other primates,” Sousa says. “The idea is you have a mutation in a gene or in several genes and those genes now have slightly different functions. But if these genes are relevant for brain development, for example, how many of a certain cell is produced, or how cells are connecting to other cells, how is it affecting the neuronal circuitry and their physiological properties? We want to understand how these differences lead to differences in the brain and then lead to differences we can observe in adults.”

    The study’s observations were made in the brains of adults, after much of the development is complete. This means that the differences may be occurring during the brain’s development. So, the researchers’ next step is to study samples from developing brains and extend their area of investigation past the prefrontal cortex to potentially find where and when these differences originate. The hope is that this information will lead to a more robust foundation to lay developmental disorder research on top of.

    “We are able to do extraordinary things, right? We are studying life itself, the universe, and so much more. And this is really unique when you look around,” says Sousa, whose team included graduate students Ryan Risgaards and Zachary Gomez-Sanchez, research intern Danielle Schmidt, and undergraduate students Ashwin Debnath and Cade Hottman. “If we have these unique abilities, it has to be something in the brain, right? There is something in the brain that allows us to do all of that and we are really interested in knowing what it is.”

    For more on this research, see New Clues to What Makes the Human Brain Different.

    Reference: “Molecular and cellular evolution of the primate dorsolateral prefrontal cortex” by Shaojie Ma, Mario Skarica, Qian Li, Chuan Xu, Ryan D. Risgaard, Andrew T. N. Tebbenkamp, Xoel Mato-Blanco, Rothem Kovner, Željka Krsnik, Xabier de Martin, Victor Luria, Xavier Martí-Pérez, Dan Liang, Amir Karger, Danielle K. Schmidt, Zachary Gomez-Sanchez, Cai Qi, Kevin T. Gobeske, Sirisha Pochareddy, Ashwin Debnath, Cade J. Hottman, Joshua Spurrier, Leon Teo, Anthony G. Boghdadi, Jihane Homman-Ludiye, John J. Ely, Etienne W. Daadi, Da Mi, Marcel Daadi, Oscar Marín, Patrick R. Hof, Mladen-Roko Rasin, James Bourne, Chet C. Sherwood, Gabriel Santpere, Matthew J. Girgenti, Stephen M. Strittmatter, André M. M. Sousa and Nenad Sestan, 25 August 2022, Science.
    DOI: 10.1126/science.abo7257

    Brain Neuroscience Primates University of Wisconsin-Madison
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Groundbreaking Study Identifies Universal Blueprint for Mammalian Brains

    Cooking Fueled the Growth of the Human Brain

    Locomotion Restored in Mice With Huntington’s-Like Condition

    Synchronized Brain Oscillations Crucial for Short-Term Memory

    Human Brains Take Longer to Wire Up Than Simian Ones

    Researchers Use fMRI to Study How Humor Activates Kids’ Brain Regions

    Neuroscientists Decode Correlation Between Sound and Brain Activity

    Mother’s Nurturing Results in Larger Hippocampus in Children

    Neuroscientists Study Cortical Areas Specialized in Processing Visual Inputs in Mice

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.