Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»MIT’s SPARROW Redefines Drug Discovery With Smart Synthesis
    Technology

    MIT’s SPARROW Redefines Drug Discovery With Smart Synthesis

    By Adam Zewe, Massachusetts Institute of TechnologyAugust 12, 2024No Comments7 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    AI Medicine Health Discovery Art Concept
    The SPARROW algorithm optimizes drug discovery by efficiently selecting molecular candidates that balance cost and potential benefits, using machine learning to assess numerous variables and improve synthesis decisions. Credit: SciTechDaily.com

    Researchers at MIT have developed SPARROW, a groundbreaking algorithm designed to streamline the drug discovery process by optimizing molecular selection for synthesis based on cost and property prediction.

    The framework, demonstrated through three real-world case studies, effectively integrates a wide range of input molecules and calculates the most cost-efficient synthesis plans, potentially revolutionizing drug discovery and other chemistry-related fields.

    Revolutionizing Drug Discovery With AI

    The use of AI to streamline drug discovery is exploding. Researchers are deploying machine-learning models to help them identify molecules, among billions of options, that might have the properties they are seeking to develop new medicines.

    But there are so many variables to consider — from the price of materials to the risk of something going wrong — that even when scientists use AI, weighing the costs of synthesizing the best candidates is no easy task.

    The myriad challenges involved in identifying the best and most cost-efficient molecules to test is one reason new medicines take so long to develop, as well as a key driver of high prescription drug prices.

    To help scientists make cost-aware choices, MIT researchers developed an algorithmic framework to automatically identify optimal molecular candidates, which minimizes synthetic cost while maximizing the likelihood candidates have desired properties. The algorithm also identifies the materials and experimental steps needed to synthesize these molecules.

    Atoms Molecules Chemistry
    The SPARROW algorithm automatically identifies the best molecules to test as potential new medicines, given the vast number of factors affecting each choice.

    SPARROW: A Comprehensive Solution

    Their quantitative framework, known as Synthesis Planning and Rewards-based Route Optimization Workflow (SPARROW), considers the costs of synthesizing a batch of molecules at once, since multiple candidates can often be derived from some of the same chemical compounds.

    Moreover, this unified approach captures key information on molecular design, property prediction, and synthesis planning from online repositories and widely used AI tools.

    Beyond helping pharmaceutical companies discover new drugs more efficiently, SPARROW could be used in applications like the invention of new agrichemicals or the discovery of specialized materials for organic electronics.

    The Art and Science of Compound Selection

    “The selection of compounds is very much an art at the moment — and at times it is a very successful art. But because we have all these other models and predictive tools that give us information on how molecules might perform and how they might be synthesized, we can and should be using that information to guide the decisions we make,” says Connor Coley, the Class of 1957 Career Development Assistant Professor in the MIT departments of Chemical Engineering and Electrical Engineering and Computer Science, and senior author of a paper on SPARROW.

    Coley is joined on the paper by lead author Jenna Fromer SM ’24. The research was published on June 17 in Nature Computational Science.

    Balancing Costs and Benefits in Synthesis

    In a sense, whether a scientist should synthesize and test a certain molecule boils down to a question of the synthetic cost versus the value of the experiment. However, determining cost or value are tough problems on their own.

    For instance, an experiment might require expensive materials or it could have a high risk of failure. On the value side, one might consider how useful it would be to know the properties of this molecule or whether those predictions carry a high level of uncertainty.

    At the same time, pharmaceutical companies increasingly use batch synthesis to improve efficiency. Instead of testing molecules one at a time, they use combinations of chemical building blocks to test multiple candidates at once. However, this means the chemical reactions must all require the same experimental conditions. This makes estimating cost and value even more challenging.

    Advanced Optimization Techniques

    SPARROW tackles this challenge by considering the shared intermediary compounds involved in synthesizing molecules and incorporating that information into its cost-versus-value function.

    “When you think about this optimization game of designing a batch of molecules, the cost of adding on a new structure depends on the molecules you have already chosen,” Coley says.

    The framework also considers things like the costs of starting materials, the number of reactions that are involved in each synthetic route, and the likelihood those reactions will be successful on the first try.

    Enhancing Molecular Design Through SPARROW

    To utilize SPARROW, a scientist provides a set of molecular compounds they are thinking of testing and a definition of the properties they are hoping to find.

    From there, SPARROW collects information on the molecules and their synthetic pathways and then weighs the value of each one against the cost of synthesizing a batch of candidates. It automatically selects the best subset of candidates that meet the user’s criteria and finds the most cost-effective synthetic routes for those compounds.

    “It does all this optimization in one step, so it can really capture all of these competing objectives simultaneously,” Fromer says.

    Versatility and Application of SPARROW

    SPARROW is unique because it can incorporate molecular structures that have been hand-designed by humans, those that exist in virtual catalogs, or never-before-seen molecules that have been invented by generative AI models.

    “We have all these different sources of ideas. Part of the appeal of SPARROW is that you can take all these ideas and put them on a level playing field,” Coley adds.

    The researchers evaluated SPARROW by applying it in three case studies. The case studies, based on real-world problems faced by chemists, were designed to test SPARROW’s ability to find cost-efficient synthesis plans while working with a wide range of input molecules.

    They found that SPARROW effectively captured the marginal costs of batch synthesis and identified common experimental steps and intermediate chemicals. In addition, it could scale up to handle hundreds of potential molecular candidates.

    “In the machine-learning-for-chemistry community, there are so many models that work well for retrosynthesis or molecular property prediction, for example, but how do we actually use them? Our framework aims to bring out the value of this prior work. By creating SPARROW, hopefully, we can guide other researchers to think about compound downselection using their own cost and utility functions,” Fromer says.

    Future Directions and Impact

    In the future, the researchers want to incorporate additional complexity into SPARROW. For instance, they’d like to enable the algorithm to consider that the value of testing one compound may not always be constant. They also want to include more elements of parallel chemistry in its cost-versus-value function.

    “The work by Fromer and Coley better aligns algorithmic decision-making to the practical realities of chemical synthesis. When existing computational design algorithms are used, the work of determining how to best synthesize the set of designs is left to the medicinal chemist, resulting in less optimal choices and extra work for the medicinal chemist,” says Patrick Riley, senior vice president of artificial intelligence at Relay Therapeutics, who was not involved with this research. “This paper shows a principled path to include consideration of joint synthesis, which I expect to result in higher quality and more accepted algorithmic designs.”

    “Identifying which compounds to synthesize in a way that carefully balances time, cost, and the potential for making progress toward goals while providing useful new information is one of the most challenging tasks for drug discovery teams. The SPARROW approach from Fromer and Coley does this in an effective and automated way, providing a useful tool for human medicinal chemistry teams and taking important steps toward fully autonomous approaches to drug discovery,” adds John Chodera, a computational chemist at Memorial Sloan Kettering Cancer Center, who was not involved with this work.

    Reference: “An algorithmic framework for synthetic cost-aware decision making in molecular design” by Jenna C. Fromer, and Connor W. Coley, 17 June 2024, Nature Computational Science.
    DOI: 10.1038/s43588-024-00639-y

    This research was supported, in part, by the DARPA Accelerated Molecular Discovery Program, the Office of Naval Research, and the National Science Foundation.

    Artificial Intelligence Biotechnology Machine Learning MIT Pharmaceuticals
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    MIT’s “FrameDiff” – Generative AI Imagines New Protein Structures That Could Transform Medicine

    MIT’s AI Learns Molecular Language for Rapid Material Development and Drug Discovery

    MIT’s AI and Laser Duo Is Shaking Up How We Make Medicine

    Boosting Computing Power With Machine Learning for the Future of Particle Physics

    Artificial Intelligence Uses “Self-Learning” to Make Cancer Treatment Less Toxic

    Machine-Learning Models Capture Subtle Variations in Facial Expressions

    Machine-Learning System Uses Physics to Identify Habitable Planets

    MIT Launches Intelligence Quest To Advance Human and Machine Intelligence Research

    Liquid–Liquid Separator Being Tested in Outer Space

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    • New Study Unravels the Mystery of COVID’s Worst Pediatric Complication
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.