Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Highly Transparent Polymer Solar Cell Produces Energy by Absorbing Near-Infrared Light
    Technology

    Highly Transparent Polymer Solar Cell Produces Energy by Absorbing Near-Infrared Light

    By Jennifer Marcus, University of California - Los AngelesJuly 20, 2012No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    transparent solar cells for windows
    Visibly Transparent Polymer Solar Cells Produced by Solution Processing. Credit: UCLA 

    Using a photoactive plastic that converts infrared light into an electrical current, scientists developed a new kind of polymer solar cell that produces energy by absorbing mainly near-infrared light, not visible light, making the cells nearly 70% transparent to the human eye.

    University of California, Los Angeles (UCLA) researchers have developed a new transparent solar cell that is an advance toward giving windows in homes and other buildings the ability to generate electricity while still allowing people to see outside. Their study appears in the journal ACS Nano.

    The UCLA team describes a new kind of polymer solar cell (PSC) that produces energy by absorbing mainly infrared light, not visible light, making the cells nearly 70% transparent to the human eye. They made the device from a photoactive plastic that converts infrared light into an electrical current.

    “These results open the potential for visibly transparent polymer solar cells as add-on components of portable electronics, smart windows and building-integrated photovoltaics and in other applications,” said study leader Yang Yang, a UCLA professor of materials science and engineering, who also is director of the Nano Renewable Energy Center at California NanoSystems Institute (CNSI).

    Yang added that there has been intense worldwide interest in so-called polymer solar cells. “Our new PSCs are made from plastic-like materials and are lightweight and flexible,” he said. “More importantly, they can be produced in high volume at low cost.”

    Polymer solar cells have attracted great attention due to their advantages over competing solar cell technologies. Scientists have also been intensely investigating PSCs for their potential in making unique advances for broader applications. Several such applications would be enabled by high-performance visibly transparent photovoltaic (PV) devices, including building-integrated photovoltaics and integrated PV chargers for portable electronics.

    Previously, many attempts have been made toward demonstrating visibly transparent or semitransparent PSCs. However, these demonstrations often result in low visible light transparency and/or low device efficiency because suitable polymeric PV materials and efficient transparent conductors were not well deployed in device design and fabrication.

    A team of UCLA researchers from the California NanoSystems Institute, the UCLA Henry Samueli School of Engineering and Applied Science and UCLA’s Department of Chemistry and Biochemistry have demonstrated high-performance, solution-processed, visibly transparent polymer solar cells through the incorporation of near-infrared light-sensitive polymer and using silver nanowire composite films as the top transparent electrode. The near-infrared photoactive polymer absorbs more near-infrared light but is less sensitive to visible light, balancing solar cell performance and transparency in the visible wavelength region.

    Another breakthrough is the transparent conductor made of a mixture of silver nanowire and titanium dioxide nanoparticles, which was able to replace the opaque metal electrode used in the past. This composite electrode also allows the solar cells to be fabricated economically by solution processing. With this combination, 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells has been achieved.

    “We are excited by this new invention on transparent solar cells, which applied our recent advances in transparent conducting windows (also published in ACS Nano) to fabricate these devices,” said Paul S.Weiss, CNSI director and Fred Kavli Chair in NanoSystems Sciences.

    Reference: “Visibly Transparent Polymer Solar Cells Produced by Solution Processing” by Chun-Chao Chen, Letian Dou, Rui Zhu, Choong-Heui Chung, Tze-Bin Song, Yue Bing Zheng, Steve Hawks, Gang Li, Paul S. Weiss and Yang Yang, 4 July 2012, ACS Nano.
    DOI: 10.1021/nn3029327

    Study authors also include Weiss; materials science and engineering postdoctoral researcher Rui Zhu; Ph.D. candidates Chun-Chao Chen, Letian Dou, Choong-Heui Chung, Tze-Bin Song and Steve Hawks; Gang Li, who is former vice president of engineering for Solarmer Energy, Inc., a startup from UCLA; and CNSI postdoctoral researcher Yue Bing Zheng.

    The study was supported by the Henry Samueli School of Engineering and Applied Science, the Office of Naval Research, and The Kavli Foundation.

    Green Technology Materials Science Nanoparticles Nanotechnology Photovoltaics Renewable Energy Solar Cells UCLA
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New “Tandem” Solar Cell to Harnesses More Sunlight

    Engineers Develop New System to Harness the Full Spectrum of Available Solar Radiation

    Liquid Inks Create More Efficient and Cheaper Solar Cells

    New Type of CNT Solar Cell is Twice as Efficient as Its Predecessors

    Researchers Discover a Simple Way to Increase Solar Cell Efficiency

    Aluminum Studs Improve Solar Panel Efficiency

    New 3D Graphene Material – An Inexpensive Replacement for Platinum in Solar Cells

    Disordered Nature of Plastic Polymers Can Improve Performance of Plastic Solar Cells

    First All Carbon Solar Cell Made From Nanotubes and Buckyballs

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.